Free Access
Issue |
ESAIM: M2AN
Volume 48, Number 1, January-February 2014
|
|
---|---|---|
Page(s) | 259 - 283 | |
DOI | https://doi.org/10.1051/m2an/2013100 | |
Published online | 10 January 2014 |
- R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985) 303–320. [CrossRef] [Google Scholar]
- M. Barrault, N.C. Nguyen, Y. Maday and A.T. Patera, An empirical interpolation method: Application to efficient reduced-basis discretization of partial differential equations. C.R. Acad. Sci. Paris, Ser. I 339 (2004) 667–672. [Google Scholar]
- P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43 (2011) 1457–1472. [CrossRef] [MathSciNet] [Google Scholar]
- A. Buffa, Y. Maday, A. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. M2AN 46 (2012) 595–603. Special Issue in honor of David Gottlieb. [Google Scholar]
- T. Bui-Thanh, Model-Constrained Optimization Methods for Reduction of Parameterized Large-Scale Systems, MIT Thesis (2007). [Google Scholar]
- T. Bui-Thanh, K. Willcox and O. Ghattas, Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30 (2008) 3270–3288. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Chen, J.S. Hesthaven, Y. Maday and J. Rodriguez, A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations. C.R. Acad. Sci. Paris, Ser. I 346 (2008) 1295–1300. [CrossRef] [Google Scholar]
- Y. Chen, J.S. Hesthaven, Y. Maday and J. Rodriguez, Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2d Maxwells problem. ESAIM: M2AN 43 (2009) 1099–1116. [CrossRef] [EDP Sciences] [Google Scholar]
- Y. Chen, J.S. Hesthaven, Y. Maday and J. Rodriguez, Certified reduced basis methods and output bounds for the harmonic maxwell equations. SIAM J. Sci. Comput. 32 (2010) 970–996. [CrossRef] [MathSciNet] [Google Scholar]
- J.L. Eftang, A.T. Patera and E.M. Ronquist, An “hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32 (2010) 3170–3200. [CrossRef] [MathSciNet] [Google Scholar]
- J.L. Eftang and B. Stamm, Parameter multi-domain hp empirical interpolation. Int. J. Numer. Meth. Engng. 90 (2012) 412–428. [Google Scholar]
- B. Fares, J.S. Hesthaven, Y. Maday and B. Stamm, The reduced basis method for the electric field integral equation. J. Comput. Phys. 230 (2011) 5532–5555. [Google Scholar]
- M.A. Grepl, Y. Maday, N. C. Nguyen and A.T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. Math. Model. Numer. Anal. 41 (2007) 575–605. [Google Scholar]
- M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. M2AN 39 (2005) 157–181. [Google Scholar]
- B. Haasdonk, M. Dihlmann and M. Ohlberger, A training set and multiple basis functions generation approach for parametrized model reduction based on adaptive grids in parameter space. Math. Comput. Modell. Dyn. Syst. 17 (2011) 423-442. [Google Scholar]
- B. Haasdonk and M. Ohlberger, Basis construction for reduced basis methods by adaptive parameter grids, in Proc. International Conference on Adaptive Modeling and Simulation 2007 (2007) 116–119. [Google Scholar]
- J.S. Hesthaven and S. Zhang, On the use of ANOVA expansions in reduced basis methods for high-dimensional parametric partial differential equations, Brown Division of Applied Math Scientific Computing Tech Report 2011-31. [Google Scholar]
- D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C.R. Acad. Sci. Paris, Ser. I 345 (2007) 473–478. [Google Scholar]
- Y. Maday, N.C. Nguyen, A.T. Patera and G.S.H. Pau, A general multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8 (2009) 383–404. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Maday and B. Stamm, Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces, arXiv: math.NA, Apr 2012, accepted in SIAM Journal on Scientific Computing. [Google Scholar]
- A.T. Patera and G. Rozza, Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations, Version 1.0, Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering. [Google Scholar]
- A. Quarteroni, G. Rozza and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Ind. 1 (2011) 3. [CrossRef] [MathSciNet] [Google Scholar]
- S. Repin, A Posteriori Estimates for Partial Differential Equations, Walter de Gruyter, Berlin (2008). [Google Scholar]
- G. Rozza and K. Veroy, On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Eng. 196 (2007) 1244–1260. [Google Scholar]
- G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations - Application to transport and continuum mechanics. Archives Comput. Methods Engrg. 15 (2008) 229–275. [Google Scholar]
- S. Sen, Reduced-basis approximation and a posteriori error estimation for many-parameter heat conduction problems. Numerical Heat Transfer, Part B: Fundamentals 54 (2008) 369–389. [Google Scholar]
- V.N. Temlyakov, Greedy Approximation. Acta Numerica (2008) 235–409. [Google Scholar]
- K. Veroy, Reduced-Basis Methods Applied to Problems in Elasticity: Analysis and Applications, MIT Thesis (2003). [Google Scholar]
- K. Veroy, C. Prudhomme, D.V. Rovas and A. Patera, A posteriori error bounds for reduced basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, in Proc. 16th AIAA Comput. Fluid Dynamics Conf. (2003). Paper 2003–3847. [Google Scholar]
- S. Zhang, Efficient greedy algorithms for successive constraints methods with high-dimensional parameters, Brown Division of Applied Math Scientific Computing Tech Report 2011-23. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.