Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Deterministic particle approximation of aggregation diffusion equations with nonlinear mobility

Sara Daneri, Emanuela Radici and Eris Runa
Journal of Hyperbolic Differential Equations 20 (03) 707 (2023)
https://doi.org/10.1142/S0219891623500212

On the square-root approximation finite volume scheme for nonlinear drift-diffusion equations

Clément Cancès and Juliette Venel
Comptes Rendus. Mathématique 361 (G2) 535 (2023)
https://doi.org/10.5802/crmath.421

A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling

Katy Craig, Karthik Elamvazhuthi, Matt Haberland and Olga Turanova
Mathematics of Computation 92 (344) 2575 (2023)
https://doi.org/10.1090/mcom/3841

An Optimal Mass Transport Method for Random Genetic Drift

José A. Carrillo, Lin Chen and Qi Wang
SIAM Journal on Numerical Analysis 60 (3) 940 (2022)
https://doi.org/10.1137/20M1389431

Entropic Regularization of NonGradient Systems

Daniel Adams, Manh Hong Duong and Gonçalo dos Reis
SIAM Journal on Mathematical Analysis 54 (4) 4495 (2022)
https://doi.org/10.1137/21M1414668

Deterministic particle approximation of aggregation-diffusion equations on unbounded domains

Sara Daneri, Emanuela Radici and Eris Runa
Journal of Differential Equations 312 474 (2022)
https://doi.org/10.1016/j.jde.2021.12.019

The Waiting Time Phenomenon in Spatially Discretized Porous Medium and Thin Film Equations

Julian Fischer and Daniel Matthes
SIAM Journal on Numerical Analysis 59 (1) 60 (2021)
https://doi.org/10.1137/19M1300017

Geometric Partial Differential Equations - Part II

Jose A. Carrillo, Daniel Matthes and Marie-Therese Wolfram
Handbook of Numerical Analysis, Geometric Partial Differential Equations - Part II 22 271 (2021)
https://doi.org/10.1016/bs.hna.2020.10.002

A variational finite volume scheme for Wasserstein gradient flows

Clément Cancès, Thomas O. Gallouët and Gabriele Todeschi
Numerische Mathematik 146 (3) 437 (2020)
https://doi.org/10.1007/s00211-020-01153-9

Trend to equilibrium for systems with small cross-diffusion

Luca Alasio, Helene Ranetbauer, Markus Schmidtchen and Marie-Therese Wolfram
ESAIM: Mathematical Modelling and Numerical Analysis 54 (5) 1661 (2020)
https://doi.org/10.1051/m2an/2020008

A LIPSCHITZ METRIC FOR THE CAMASSA–HOLM EQUATION

JOSÉ A. CARRILLO, KATRIN GRUNERT and HELGE HOLDEN
Forum of Mathematics, Sigma 8 (2020)
https://doi.org/10.1017/fms.2020.22

Structure-preserving integrators for dissipative systems based on reversible– irreversible splitting

Xiaocheng Shang and Hans Christian Öttinger
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476 (2234) 20190446 (2020)
https://doi.org/10.1098/rspa.2019.0446

A Hybrid Mass Transport Finite Element Method for Keller–Segel Type Systems

J. A. Carrillo, N. Kolbe and M. Lukáčová-Medvid’ová
Journal of Scientific Computing 80 (3) 1777 (2019)
https://doi.org/10.1007/s10915-019-00997-0

A blob method for diffusion

José Antonio Carrillo, Katy Craig and Francesco S. Patacchini
Calculus of Variations and Partial Differential Equations 58 (2) (2019)
https://doi.org/10.1007/s00526-019-1486-3

A variational formulation of the BDF2 method for metric gradient flows

Daniel Matthes and Simon Plazotta
ESAIM: Mathematical Modelling and Numerical Analysis 53 (1) 145 (2019)
https://doi.org/10.1051/m2an/2018045

A Lagrangian Scheme for the Solution of Nonlinear Diffusion Equations Using Moving Simplex Meshes

José A. Carrillo, Bertram Düring, Daniel Matthes and David S. McCormick
Journal of Scientific Computing 75 (3) 1463 (2018)
https://doi.org/10.1007/s10915-017-0594-5

Solutions to aggregation–diffusion equations with nonlinear mobility constructed via a deterministic particle approximation

Simone Fagioli and Emanuela Radici
Mathematical Models and Methods in Applied Sciences 28 (09) 1801 (2018)
https://doi.org/10.1142/S0218202518400067

Long-time behavior of a fully discrete Lagrangian scheme for a family of fourth order equations

Horst Osberger
Discrete & Continuous Dynamical Systems - A 37 (1) 405 (2017)
https://doi.org/10.3934/dcds.2017017

Numerical study of a particle method for gradient flows

José Antonio Carrillo, Yanghong Huang, Francesco Saverio Patacchini and Gershon Wolansky
Kinetic & Related Models 10 (3) 613 (2017)
https://doi.org/10.3934/krm.2017025

Active Particles, Volume 1

M. Di Francesco, S. Fagioli, M. D. Rosini and G. Russo
Modeling and Simulation in Science, Engineering and Technology, Active Particles, Volume 1 333 (2017)
https://doi.org/10.1007/978-3-319-49996-3_9

A Convergent Lagrangian Discretization for a Nonlinear Fourth-Order Equation

Daniel Matthes and Horst Osberger
Foundations of Computational Mathematics 17 (1) 73 (2017)
https://doi.org/10.1007/s10208-015-9284-6

Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure

Clément Cancès and Cindy Guichard
Foundations of Computational Mathematics 17 (6) 1525 (2017)
https://doi.org/10.1007/s10208-016-9328-6

A Fully Discrete Variational Scheme for Solving Nonlinear Fokker--Planck Equations in Multiple Space Dimensions

Oliver Junge, Daniel Matthes and Horst Osberger
SIAM Journal on Numerical Analysis 55 (1) 419 (2017)
https://doi.org/10.1137/16M1056560

Convergence of a Particle Method for Diffusive Gradient Flows in One Dimension

J. A. Carrillo, F. S. Patacchini, P. Sternberg and G. Wolansky
SIAM Journal on Mathematical Analysis 48 (6) 3708 (2016)
https://doi.org/10.1137/16M1077210

Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms

José A. Carrillo, Helene Ranetbauer and Marie-Therese Wolfram
Journal of Computational Physics 327 186 (2016)
https://doi.org/10.1016/j.jcp.2016.09.040

On gradient structures for Markov chains and the passage to Wasserstein gradient flows

Matthias Liero and Karoline Disser
Networks and Heterogeneous Media 10 (2) 233 (2015)
https://doi.org/10.3934/nhm.2015.10.233

Rigorous Derivation of Nonlinear Scalar Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit

M. Di Francesco and M.D. Rosini
Archive for Rational Mechanics and Analysis 217 (3) 831 (2015)
https://doi.org/10.1007/s00205-015-0843-4