Free Access
Volume 48, Number 3, May-June 2014
Page(s) 697 - 726
Published online 07 February 2014
  1. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics. ETH Zürich, Birkhäuser Verlag, Basel (2005). [Google Scholar]
  2. L. Ambrosio, S. Lisini and G. Savaré, Stability of flows associated to gradient vector fields and convergence of iterated transport maps. Manuscripta Math. 121 (2006) 1–50. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Blanchet, V. Calvez and J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46 (2008) 691–721. [CrossRef] [MathSciNet] [Google Scholar]
  5. C.J. Budd, G.J. Collins, W.Z. Huang and R.D. Russell, Self-similar numerical solutions of the porous-medium equation using moving mesh methods. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 (1999) 1047–1077. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Burger, J.A. Carrillo and M.-T. Wolfram, A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models 3 (2010) 59–83. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.A. Carrillo and J.S. Moll, Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms. SIAM J. Sci. Comput. 31 (2009/2010) 4305–4329. [CrossRef] [Google Scholar]
  8. F. Cavalli and G. Naldi, A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinet. Relat. Models 3 (2010) 123–142. [CrossRef] [MathSciNet] [Google Scholar]
  9. B. Düring, D. Matthes and J.P. Milišić, A gradient flow scheme for nonlinear fourth order equations. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 935–959. [CrossRef] [MathSciNet] [Google Scholar]
  10. L.C. Evans, O. Savin and W. Gangbo, Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal. 37 (2005) 737–751. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Giusti, Minimal surfaces and functions of bounded variation, vol. 80, Monographs in Mathematics. Birkhäuser Verlag, Basel (1984). [Google Scholar]
  12. L. Gosse and G. Toscani, Identification of asymptotic decay to self-similarity for one-dimensional filtration equations. SIAM J. Numer. Anal. 43 (2006) 2590–2606 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  13. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. Kinderlehrer and N.J. Walkington, Approximation of parabolic equations using the Wasserstein metric. ESAIM: M2AN 33 (1999) 837–852. [CrossRef] [EDP Sciences] [Google Scholar]
  15. M. Leven, Gradientenfluß-basierte diskretisierung parabolischer gleichungen, diplomarbeit, Universität Bonn (2002). [Google Scholar]
  16. R.C. MacCamy and E. Socolovsky, A numerical procedure for the porous media equation. Hyperbolic partial differential equations, II. Comput. Math. Appl. 11 (1985) 315–319. [CrossRef] [Google Scholar]
  17. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179. [CrossRef] [MathSciNet] [Google Scholar]
  18. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26 (2001) 101–174. [CrossRef] [MathSciNet] [Google Scholar]
  19. T. Roessler, Discretizing the porous medium equation based on its gradient flow structure – a consistency paradox, Technical report 150, Sonderforschungsbereich 611, May 2004.Available online at [Google Scholar]
  20. R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 395–431. [MathSciNet] [Google Scholar]
  21. G. Russo, Deterministic diffusion of particles. Commun. Pure Appl. Math. 43 (1990) 697–733. [CrossRef] [Google Scholar]
  22. S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. 31 (2011) 1427-1451. [Google Scholar]
  23. C. Villani, Topics in optimal transportation, in vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). [Google Scholar]
  24. M. Westdickenberg and J. Wilkening, Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations. ESAIM: M2AN 44 (2010) 133–166. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you