Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Domain Decomposition Methods for the Monge–Ampère Equation

Yassine Boubendir, Jake Brusca, Brittany F. Hamfeldt and Tadanaga Takahashi
SIAM Journal on Numerical Analysis 62 (4) 1979 (2024)
https://doi.org/10.1137/23M1576839

A Convergent Quadrature-Based Method for the Monge–Ampère Equation

Jake Brusca and Brittany Froese Hamfeldt
SIAM Journal on Scientific Computing 45 (3) A1097 (2023)
https://doi.org/10.1137/22M1494658

Semi-discrete optimal transport: hardness, regularization and numerical solution

Bahar Taşkesen, Soroosh Shafieezadeh-Abadeh and Daniel Kuhn
Mathematical Programming 199 (1-2) 1033 (2023)
https://doi.org/10.1007/s10107-022-01856-x

Monotone discretization of the Monge–Ampère equation of optimal transport

Guillaume Bonnet and Jean-Marie Mirebeau
ESAIM: Mathematical Modelling and Numerical Analysis 56 (3) 815 (2022)
https://doi.org/10.1051/m2an/2022029

Convergent Finite Difference Methods for Fully Nonlinear Elliptic Equations in Three Dimensions

Brittany Froese Hamfeldt and Jacob Lesniewski
Journal of Scientific Computing 90 (1) (2022)
https://doi.org/10.1007/s10915-021-01714-6

A discrete method for the initialization of semi-discrete optimal transport problem

Judy Yangjun Lin, Shaoyan Guo, Longhan Xie, Ruxu Du and Gu Xu
Knowledge-Based Systems 212 106608 (2021)
https://doi.org/10.1016/j.knosys.2020.106608

Geometric Partial Differential Equations - Part I

Michael Neilan, Abner J. Salgado and Wujun Zhang
Handbook of Numerical Analysis, Geometric Partial Differential Equations - Part I 21 105 (2020)
https://doi.org/10.1016/bs.hna.2019.05.003

A note on the Monge–Ampère type equations with general source terms

Weifeng Qiu and Lan Tang
Mathematics of Computation 89 (326) 2675 (2020)
https://doi.org/10.1090/mcom/3554

A Finite Element/Operator-Splitting Method for the Numerical Solution of the Three Dimensional Monge–Ampère Equation

Hao Liu, Roland Glowinski, Shingyu Leung and Jianliang Qian
Journal of Scientific Computing 81 (3) 2271 (2019)
https://doi.org/10.1007/s10915-019-01080-4

The boundary method for semi-discrete optimal transport partitions and Wasserstein distance computation

Luca Dieci and J.D. Walsh III
Journal of Computational and Applied Mathematics 353 318 (2019)
https://doi.org/10.1016/j.cam.2018.12.034

Pointwise rates of convergence for the Oliker–Prussner method for the Monge–Ampère equation

Ricardo H. Nochetto and Wujun Zhang
Numerische Mathematik 141 (1) 253 (2019)
https://doi.org/10.1007/s00211-018-0988-9

Minimal convex extensions and finite difference discretisation of the quadratic Monge–Kantorovich problem

JEAN-DAVID BENAMOU and VINCENT DUVAL
European Journal of Applied Mathematics 30 (6) 1041 (2019)
https://doi.org/10.1017/S0956792518000451

Convergent approximation of non-continuous surfaces of prescribed Gaussian curvature

Brittany Froese Hamfeldt
Communications on Pure & Applied Analysis 17 (2) 671 (2018)
https://doi.org/10.3934/cpaa.2018036

A Lagrangian Scheme à la Brenier for the Incompressible Euler Equations

Thomas O. Gallouët and Quentin Mérigot
Foundations of Computational Mathematics 18 (4) 835 (2018)
https://doi.org/10.1007/s10208-017-9355-y

Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces

Guillaume Legendre and Gabriel Turinici
Comptes Rendus. Mathématique 355 (3) 345 (2017)
https://doi.org/10.1016/j.crma.2017.02.001