Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Nonlinear aggregation-diffusion equations with Riesz potentials

Yanghong Huang, Edoardo Mainini, Juan Luis Vázquez and Bruno Volzone
Journal of Functional Analysis 110465 (2024)
https://doi.org/10.1016/j.jfa.2024.110465

On the well-posedness via the JKO approach and a study of blow-up of solutions for a multispecies Keller-Segel chemotaxis system with no mass conservation

Julio C. Valencia-Guevara, John Pérez and Eduardo Abreu
Journal of Mathematical Analysis and Applications 528 (2) 127602 (2023)
https://doi.org/10.1016/j.jmaa.2023.127602

Global solvability of a chemotaxis-haptotaxis model in the whole 2-d space

Meng Liu and Yuxiang Li
Mathematical Biosciences and Engineering 20 (4) 7565 (2023)
https://doi.org/10.3934/mbe.2023327

Exponential Convergence to Equilibrium for Coupled Systems of Nonlinear Degenerate Drift Diffusion Equations

Lisa Beck, Daniel Matthes and Martina Zizza
SIAM Journal on Mathematical Analysis 55 (3) 1766 (2023)
https://doi.org/10.1137/21M1466980

An Unconditionally Energy Stable and Positive Upwind DG Scheme for the Keller–Segel Model

Daniel Acosta-Soba, Francisco Guillén-González and J. Rafael Rodríguez-Galván
Journal of Scientific Computing 97 (1) (2023)
https://doi.org/10.1007/s10915-023-02320-4

Stationary Ring and Concentric-Ring Solutions of the Keller--Segel Model with Quadratic Diffusion

Lin Chen, Fanze Kong and Qi Wang
SIAM Journal on Mathematical Analysis 52 (5) 4565 (2020)
https://doi.org/10.1137/19M1298998

Modeling Honey Bee Colonies in Winter Using a Keller--Segel Model With a Sign-Changing Chemotactic Coefficient

Robbin Bastiaansen, Arjen Doelman, Frank van Langevelde and Vivi Rottschäfer
SIAM Journal on Applied Mathematics 80 (2) 839 (2020)
https://doi.org/10.1137/19M1246067

Unconditionally Bound Preserving and Energy Dissipative Schemes for a Class of Keller--Segel Equations

Jie Shen and Jie Xu
SIAM Journal on Numerical Analysis 58 (3) 1674 (2020)
https://doi.org/10.1137/19M1246705

Phase Transitions and Bump Solutions of the Keller--Segel Model with Volume Exclusion

Jose A. Carrillo, Xinfu Chen, Qi Wang, Zhian Wang and Lu Zhang
SIAM Journal on Applied Mathematics 80 (1) 232 (2020)
https://doi.org/10.1137/19M125827X

Mathematical Theorems - Boundary Value Problems and Approximations

Maria Vladimirovna Shubina
Mathematical Theorems - Boundary Value Problems and Approximations (2020)
https://doi.org/10.5772/intechopen.91214

A Hybrid Mass Transport Finite Element Method for Keller–Segel Type Systems

J. A. Carrillo, N. Kolbe and M. Lukáčová-Medvid’ová
Journal of Scientific Computing 80 (3) 1777 (2019)
https://doi.org/10.1007/s10915-019-00997-0

Well-posedness of evolution equations with time-dependent nonlinear mobility: A modified minimizing movement scheme

Jonathan Zinsl
Advances in Calculus of Variations 12 (4) 423 (2019)
https://doi.org/10.1515/acv-2016-0020

How strong singularities can be regularized by logistic degradation in the Keller–Segel system?

Michael Winkler
Annali di Matematica Pura ed Applicata (1923 -) 198 (5) 1615 (2019)
https://doi.org/10.1007/s10231-019-00834-z

Efficient Numerical Algorithms Based on Difference Potentials for Chemotaxis Systems in 3D

Yekaterina Epshteyn and Qing Xia
Journal of Scientific Computing 80 (1) 26 (2019)
https://doi.org/10.1007/s10915-019-00928-z

On Patlak-Keller-Segel system for several populations: A gradient flow approach

Debabrata Karmakar and Gershon Wolansky
Journal of Differential Equations 267 (12) 7483 (2019)
https://doi.org/10.1016/j.jde.2019.08.004

Energy Dissipative Local Discontinuous Galerkin Methods for Keller–Segel Chemotaxis Model

Li Guo, Xingjie Helen Li and Yang Yang
Journal of Scientific Computing 78 (3) 1387 (2019)
https://doi.org/10.1007/s10915-018-0813-8

Exact Traveling Wave Solutions of One-Dimensional Parabolic–Parabolic Models of Chemotaxis

M. V. Shubina
Russian Journal of Mathematical Physics 25 (3) 383 (2018)
https://doi.org/10.1134/S1061920818030093

Sorting Phenomena in a Mathematical Model For Two Mutually Attracting/Repelling Species

Martin Burger, Marco Di Francesco, Simone Fagioli and Angela Stevens
SIAM Journal on Mathematical Analysis 50 (3) 3210 (2018)
https://doi.org/10.1137/17M1125716

A JKO Splitting Scheme for Kantorovich--Fisher--Rao Gradient Flows

Thomas O. Gallouët and Léonard Monsaingeon
SIAM Journal on Mathematical Analysis 49 (2) 1100 (2017)
https://doi.org/10.1137/16M106666X

Existence of solutions for a class of fourth order cross-diffusion systems of gradient flow type

Daniel Matthes and Jonathan Zinsl
Nonlinear Analysis 159 316 (2017)
https://doi.org/10.1016/j.na.2016.12.002

Self-Similarity in a Thin Film Muskat Problem

Philippe Laurençot and Bogdan-Vasile Matioc
SIAM Journal on Mathematical Analysis 49 (4) 2790 (2017)
https://doi.org/10.1137/16M1055335

A Wasserstein gradient flow approach to Poisson−Nernst−Planck equations

David Kinderlehrer, Léonard Monsaingeon and Xiang Xu
ESAIM: Control, Optimisation and Calculus of Variations 23 (1) 137 (2017)
https://doi.org/10.1051/cocv/2015043

Existence of Weak Solutions to a Class of Fourth Order Partial Differential Equations with Wasserstein Gradient Structure

Daniel Loibl, Daniel Matthes and Jonathan Zinsl
Potential Analysis 45 (4) 755 (2016)
https://doi.org/10.1007/s11118-016-9565-y

Stationary solutions of Keller–Segel-type crowd motion and herding models : Multiplicity and dynamical stability

Jean Dolbeault, Gaspard Jankowiak and Peter Markowich
Mathematics and Mechanics of Complex Systems 3 (3) 211 (2015)
https://doi.org/10.2140/memocs.2015.3.211

Optimal Transport for Applied Mathematicians

Filippo Santambrogio
Progress in Nonlinear Differential Equations and Their Applications, Optimal Transport for Applied Mathematicians 87 249 (2015)
https://doi.org/10.1007/978-3-319-20828-2_7

Optimal Transport for Applied Mathematicians

Filippo Santambrogio
Progress in Nonlinear Differential Equations and Their Applications, Optimal Transport for Applied Mathematicians 87 285 (2015)
https://doi.org/10.1007/978-3-319-20828-2_8

Exponential convergence to equilibrium in a Poisson-Nernst-Planck-type system with nonlinear diffusion

Jonathan Zinsl
Discrete and Continuous Dynamical Systems 36 (5) 2915 (2015)
https://doi.org/10.3934/dcds.2016.36.2915

Optimal Transport for Applied Mathematicians

Filippo Santambrogio
Progress in Nonlinear Differential Equations and Their Applications, Optimal Transport for Applied Mathematicians 87 219 (2015)
https://doi.org/10.1007/978-3-319-20828-2_6