Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Deep ReLU neural network approximation in Bochner spaces and applications to parametric PDEs

Dinh Dũng, Van Kien Nguyen and Duong Thanh Pham
Journal of Complexity 79 101779 (2023)
https://doi.org/10.1016/j.jco.2023.101779

Collocation approximation by deep neural ReLU networks for parametric and stochastic PDEs with lognormal inputs

Dung Dinh
Sbornik: Mathematics 214 (4) 479 (2023)
https://doi.org/10.4213/sm9791e

Коллокационная аппроксимация глубокими $\mathrm{ReLU}$-нейронными сетями решений параметрических и стохастических уравнений с частными производными c логнормальными входами

Dung Dinh
Математический сборник 214 (4) 38 (2023)
https://doi.org/10.4213/sm9791

Reduced order modeling for elliptic problems with high contrast diffusion coefficients

Albert Cohen, Wolfgang Dahmen, Matthieu Dolbeault and Agustin Somacal
ESAIM: Mathematical Modelling and Numerical Analysis 57 (5) 2775 (2023)
https://doi.org/10.1051/m2an/2023013

An adaptive stochastic Galerkin method based on multilevel expansions of random fields: Convergence and optimality

Markus Bachmayr and Igor Voulis
ESAIM: Mathematical Modelling and Numerical Analysis 56 (6) 1955 (2022)
https://doi.org/10.1051/m2an/2022062

A Theoretical Analysis of Deep Neural Networks and Parametric PDEs

Gitta Kutyniok, Philipp Petersen, Mones Raslan and Reinhold Schneider
Constructive Approximation 55 (1) 73 (2022)
https://doi.org/10.1007/s00365-021-09551-4

On the Convergence of Adaptive Stochastic Collocation for Elliptic Partial Differential Equations with Affine Diffusion

Martin Eigel, Oliver G. Ernst, Björn Sprungk and Lorenzo Tamellini
SIAM Journal on Numerical Analysis 60 (2) 659 (2022)
https://doi.org/10.1137/20M1364722

The uniform sparse FFT with application to PDEs with random coefficients

Lutz Kämmerer, Daniel Potts and Fabian Taubert
Sampling Theory, Signal Processing, and Data Analysis 20 (2) (2022)
https://doi.org/10.1007/s43670-022-00037-3

Polynomial Approximation of Anisotropic Analytic Functions of Several Variables

Andrea Bonito, Ronald DeVore, Diane Guignard, Peter Jantsch and Guergana Petrova
Constructive Approximation 53 (2) 319 (2021)
https://doi.org/10.1007/s00365-020-09511-4

Nonlinear methods for model reduction

Andrea Bonito, Albert Cohen, Ronald DeVore, et al.
ESAIM: Mathematical Modelling and Numerical Analysis 55 (2) 507 (2021)
https://doi.org/10.1051/m2an/2020057

Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs

Dinh Dũng
ESAIM: Mathematical Modelling and Numerical Analysis 55 (3) 1163 (2021)
https://doi.org/10.1051/m2an/2021017

Intrusive generalized polynomial chaos with asynchronous time integration for the solution of the unsteady Navier–Stokes equations

P. Bonnaire, P. Pettersson and C.F. Silva
Computers & Fluids 223 104952 (2021)
https://doi.org/10.1016/j.compfluid.2021.104952

Sparse Grids and Applications - Munich 2018

Oliver G. Ernst, Björn Sprungk and Lorenzo Tamellini
Lecture Notes in Computational Science and Engineering, Sparse Grids and Applications - Munich 2018 144 1 (2021)
https://doi.org/10.1007/978-3-030-81362-8_1

MDFEM: Multivariate decomposition finite element method for elliptic PDEs with uniform random diffusion coefficients using higher-order QMC and FEM

Dong T. P. Nguyen and Dirk Nuyens
Numerische Mathematik 148 (3) 633 (2021)
https://doi.org/10.1007/s00211-021-01212-9

Domain Uncertainty Quantification in Computational Electromagnetics

Ruben Aylwin, Carlos Jerez-Hanckes, Christoph Schwab and Jakob Zech
SIAM/ASA Journal on Uncertainty Quantification 8 (1) 301 (2020)
https://doi.org/10.1137/19M1239374

Reduced Basis Greedy Selection Using Random Training Sets

Albert Cohen, Wolfgang Dahmen, Ronald DeVore and James Nichols
ESAIM: Mathematical Modelling and Numerical Analysis 54 (5) 1509 (2020)
https://doi.org/10.1051/m2an/2020004

Sparse Polynomial Chaos expansions using variational relevance vector machines

Panagiotis Tsilifis, Iason Papaioannou, Daniel Straub and Fabio Nobile
Journal of Computational Physics 416 109498 (2020)
https://doi.org/10.1016/j.jcp.2020.109498

Integral transform solution of random coupled parabolic partial differential models

María Consuelo Casabán, Rafael Company, Vera N. Egorova and Lucas Jódar
Mathematical Methods in the Applied Sciences 43 (14) 8223 (2020)
https://doi.org/10.1002/mma.6492

Sparse Compression of Expected Solution Operators

Michael Feischl and Daniel Peterseim
SIAM Journal on Numerical Analysis 58 (6) 3144 (2020)
https://doi.org/10.1137/20M132571X

Convergence rates of high dimensional Smolyak quadrature

Jakob Zech and Christoph Schwab
ESAIM: Mathematical Modelling and Numerical Analysis 54 (4) 1259 (2020)
https://doi.org/10.1051/m2an/2020003

Quasi–Monte Carlo integration with product weights for elliptic PDEs with log-normal coefficients

Yoshihito Kazashi
IMA Journal of Numerical Analysis 39 (3) 1563 (2019)
https://doi.org/10.1093/imanum/dry028

Uncertainty Quantification for Spectral Fractional Diffusion: Sparsity Analysis of Parametric Solutions

Lukas Herrmann, Christoph Schwab and Jakob Zech
SIAM/ASA Journal on Uncertainty Quantification 7 (3) 913 (2019)
https://doi.org/10.1137/18M1176063

Линейная совместная коллокационная аппроксимация для параметрических и стохастических эллиптических дифференциальных уравнений с частными производными

Dung Dinh
Математический сборник 210 (4) 103 (2019)
https://doi.org/10.4213/sm9068

Linear collective collocation approximation for parametric and stochastic elliptic PDEs

Dinh Dũng
Sbornik: Mathematics 210 (4) 565 (2019)
https://doi.org/10.1070/SM9068

A Monte Carlo approach to computing stiffness matrices arising in polynomial chaos approximations

Juan Galvis and O. Andrés Cuervo
Mathematics and Computers in Simulation 160 72 (2019)
https://doi.org/10.1016/j.matcom.2018.11.008

Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ

Christoph Schwab and Jakob Zech
Analysis and Applications 17 (01) 19 (2019)
https://doi.org/10.1142/S0219530518500203

Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan

Albert Cohen and Giovanni Migliorati
Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan 233 (2018)
https://doi.org/10.1007/978-3-319-72456-0_12

Convergence of Sparse Collocation for Functions of Countably Many Gaussian Random Variables (with Application to Elliptic PDEs)

Oliver G. Ernst, Björn Sprungk and Lorenzo Tamellini
SIAM Journal on Numerical Analysis 56 (2) 877 (2018)
https://doi.org/10.1137/17M1123079

Quasi--Monte Carlo Integration for Affine-Parametric, Elliptic PDEs: Local Supports and Product Weights

Robert N. Gantner, Lukas Herrmann and Christoph Schwab
SIAM Journal on Numerical Analysis 56 (1) 111 (2018)
https://doi.org/10.1137/16M1082597

Representations of Gaussian Random Fields and Approximation of Elliptic PDEs with Lognormal Coefficients

Markus Bachmayr, Albert Cohen and Giovanni Migliorati
Journal of Fourier Analysis and Applications 24 (3) 621 (2018)
https://doi.org/10.1007/s00041-017-9539-5

Parametric PDEs: sparse or low-rank approximations?

Markus Bachmayr, Albert Cohen and Wolfgang Dahmen
IMA Journal of Numerical Analysis 38 (4) 1661 (2018)
https://doi.org/10.1093/imanum/drx052

Fully Discrete Approximation of Parametric and Stochastic Elliptic PDEs

Markus Bachmayr, Albert Cohen, Dinh Du͂ng and Christoph Schwab
SIAM Journal on Numerical Analysis 55 (5) 2151 (2017)
https://doi.org/10.1137/17M111626X

Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients

Markus Bachmayr, Albert Cohen, Ronald DeVore and Giovanni Migliorati
ESAIM: Mathematical Modelling and Numerical Analysis 51 (1) 341 (2017)
https://doi.org/10.1051/m2an/2016051