Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Error Analysis and Adaptive Methods of Least Squares Nonconforming Finite Element for the Transport Equations

Huipo Liu, Shuanghu Wang and Hongbin Han
Advances in Applied Mathematics and Mechanics 8 (5) 871 (2016)
https://doi.org/10.4208/aamm.2015.m1104

A collocated method for the incompressible Navier–Stokes equations inspired by the Box scheme

R. Ranjan and C. Pantano
Journal of Computational Physics 232 (1) 346 (2013)
https://doi.org/10.1016/j.jcp.2012.08.021

Contemporary review of techniques for the solution of nonlinear Burgers equation

S. Dhawan, S. Kapoor, S. Kumar and S. Rawat
Journal of Computational Science 3 (5) 405 (2012)
https://doi.org/10.1016/j.jocs.2012.06.003

A New Class of Higher Order Mixed Finite Volume Methods for Elliptic Problems

Do Y. Kwak
SIAM Journal on Numerical Analysis 50 (4) 1941 (2012)
https://doi.org/10.1137/100812446

A mixed finite volume method for elliptic problems

Ilya D. Mishev and Qian‐Yong Chen
Numerical Methods for Partial Differential Equations 23 (5) 1122 (2007)
https://doi.org/10.1002/num.20213

Nonconforming Box‐Schemes for Elliptic Problems on Rectangular Grids

Isabelle Greff
SIAM Journal on Numerical Analysis 45 (3) 946 (2007)
https://doi.org/10.1137/050647578

Some implicit methods for the numerical solution of Burgers’ equation

Amir Hossein A.E. Tabatabaei, Elham Shakour and Mehdi Dehghan
Applied Mathematics and Computation 191 (2) 560 (2007)
https://doi.org/10.1016/j.amc.2007.02.158

A discrete calculus analysis of the Keller Box scheme and a generalization of the method to arbitrary meshes

J.B. Perot and V. Subramanian
Journal of Computational Physics 226 (1) 494 (2007)
https://doi.org/10.1016/j.jcp.2007.04.015

Evaluation of the condition number in linear systems arising in finite element approximations

Alexandre Ern and Jean-Luc Guermond
ESAIM: Mathematical Modelling and Numerical Analysis 40 (1) 29 (2006)
https://doi.org/10.1051/m2an:2006006

New mixed finite volume methods for second order eliptic problems

Kwang Y. Kim
ESAIM: Mathematical Modelling and Numerical Analysis 40 (1) 123 (2006)
https://doi.org/10.1051/m2an:2006001

Nonconforming finite element methods with subgrid viscosity applied to advection‐diffusion‐reaction equations

Linda El Alaoui and Alexandre Ern
Numerical Methods for Partial Differential Equations 22 (5) 1106 (2006)
https://doi.org/10.1002/num.20146

A Hermitian Box-scheme for One-dimensional Elliptic Equations – Application to Problems with High Contrasts in the Ellipticity

J.-P. Croisille
Computing 78 (4) 329 (2006)
https://doi.org/10.1007/s00607-006-0181-3

An efficient box-scheme for convection–diffusion equations with sharp contrast in the diffusion coefficients

Jean-Pierre Croisille and Isabelle Greff
Computers & Fluids 34 (4-5) 461 (2005)
https://doi.org/10.1016/j.compfluid.2003.12.003

Residual and hierarchicalaposteriorierror estimates for nonconforming mixed finite element methods

Linda El Alaoui and Alexandre Ern
ESAIM: Mathematical Modelling and Numerical Analysis 38 (6) 903 (2004)
https://doi.org/10.1051/m2an:2004044

A-posteriori error estimates for a finite volume method for the Stokes problem in two dimensions

P. Chatzipantelidis, Ch. Makridakis and M. Plexousakis
Applied Numerical Mathematics 46 (1) 45 (2003)
https://doi.org/10.1016/S0168-9274(03)00011-4

A new high‐order finite volume element method with spectral‐like resolution

F. Sarghini, G. Coppola and G. de Felice
International Journal for Numerical Methods in Fluids 40 (3-4) 487 (2002)
https://doi.org/10.1002/fld.300

Some nonconforming mixed box schemes for elliptic problems

Jean‐Pierre Croisille and Isabelle Greff
Numerical Methods for Partial Differential Equations 18 (3) 355 (2002)
https://doi.org/10.1002/num.10003