Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

One-dimensional inelastic Boltzmann equation: Stability and uniqueness of self-similar L 1 -profiles for moderately hard potentials

R. Alonso, V. Bagland, J. A. Cañizo, B. Lods and S. Throm
Communications in Partial Differential Equations 50 (7) 931 (2025)
https://doi.org/10.1080/03605302.2025.2502565

Analysis of an Energy-Dissipating Finite Volume Scheme on Admissible Mesh for the Aggregation-Diffusion Equations

Ping Zeng and Guanyu Zhou
Journal of Scientific Computing 99 (2) (2024)
https://doi.org/10.1007/s10915-024-02522-4

Global solutions of aggregation equations and other flows with random diffusion

Matthew Rosenzweig and Gigliola Staffilani
Probability Theory and Related Fields 185 (3-4) 1219 (2023)
https://doi.org/10.1007/s00440-022-01171-8

Primal Dual Methods for Wasserstein Gradient Flows

José A. Carrillo, Katy Craig, Li Wang and Chaozhen Wei
Foundations of Computational Mathematics 22 (2) 389 (2022)
https://doi.org/10.1007/s10208-021-09503-1

Classifying Minimum Energy States for Interacting Particles: Spherical Shells

Cameron Davies, Tongseok Lim and Robert J. McCann
SIAM Journal on Applied Mathematics 82 (4) 1520 (2022)
https://doi.org/10.1137/21M1455309

Mathematical modelling of collagen fibres rearrangement during the tendon healing process

José Antonio Carrillo, Martin Parisot and Zuzanna Szymańska
Kinetic & Related Models 14 (2) 283 (2021)
https://doi.org/10.3934/krm.2021005

Uniqueness and characterization of local minimizers for the interaction energy with mildly repulsive potentials

Kyungkeun Kang, Hwa Kil Kim, Tongseok Lim and Geuntaek Seo
Calculus of Variations and Partial Differential Equations 60 (1) (2021)
https://doi.org/10.1007/s00526-020-01882-7

Isodiametry, Variance, and Regular Simplices from Particle Interactions

Tongseok Lim and Robert J. McCann
Archive for Rational Mechanics and Analysis 241 (2) 553 (2021)
https://doi.org/10.1007/s00205-021-01632-9

Geometric Partial Differential Equations - Part II

Jose A. Carrillo, Daniel Matthes and Marie-Therese Wolfram
Handbook of Numerical Analysis, Geometric Partial Differential Equations - Part II 22 271 (2021)
https://doi.org/10.1016/bs.hna.2020.10.002

On an isoperimetric problem with power-law potentials and external attraction

Guoqing Zhang and Xiaoqian Geng
Journal of Mathematical Analysis and Applications 482 (1) 123521 (2020)
https://doi.org/10.1016/j.jmaa.2019.123521

Solutions of a non‐local aggregation equation: Universal bounds, concavity changes, and efficient numerical solutions

Klemens Fellner and Barry D. Hughes
Mathematical Methods in the Applied Sciences 43 (8) 5398 (2020)
https://doi.org/10.1002/mma.6281

A LIPSCHITZ METRIC FOR THE CAMASSA–HOLM EQUATION

JOSÉ A. CARRILLO, KATRIN GRUNERT and HELGE HOLDEN
Forum of Mathematics, Sigma 8 (2020)
https://doi.org/10.1017/fms.2020.22

Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations

Rafael Bailo, José A. Carrillo, Hideki Murakawa and Markus Schmidtchen
Mathematical Models and Methods in Applied Sciences 30 (13) 2487 (2020)
https://doi.org/10.1142/S0218202520500487

Analysis of Spherical Shell Solutions for the Radially Symmetric Aggregation Equation

Daniel Balagué Guardia, Alethea Barbaro, Jose A. Carrillo and Robert Volkin
SIAM Journal on Applied Dynamical Systems 19 (4) 2628 (2020)
https://doi.org/10.1137/20M1314549

Large-Scale Dynamics of Self-propelled Particles Moving Through Obstacles: Model Derivation and Pattern Formation

P. Aceves-Sanchez, P. Degond, E. E. Keaveny, et al.
Bulletin of Mathematical Biology 82 (10) (2020)
https://doi.org/10.1007/s11538-020-00805-z

Cardinality estimation of support of the global minimizer for the interaction energy with mildly repulsive potentials

Kyungkeun Kang, Hwa Kil Kim and Geuntaek Seo
Physica D: Nonlinear Phenomena 399 51 (2019)
https://doi.org/10.1016/j.physd.2019.04.004

Implicit–explicit schemes for nonlinear nonlocal equations with a gradient flow structure in one space dimension

Raimund Bürger, Daniel Inzunza, Pep Mulet and Luis Miguel Villada
Numerical Methods for Partial Differential Equations 35 (3) 1008 (2019)
https://doi.org/10.1002/num.22336

Implicit-explicit methods for a class of nonlinear nonlocal gradient flow equations modelling collective behaviour

Raimund Bürger, Daniel Inzunza, Pep Mulet and Luis M. Villada
Applied Numerical Mathematics 144 234 (2019)
https://doi.org/10.1016/j.apnum.2019.04.018

A conservative, free energy dissipating, and positivity preserving finite difference scheme for multi-dimensional nonlocal Fokker–Planck equation

Yiran Qian, Zhongming Wang and Shenggao Zhou
Journal of Computational Physics 386 22 (2019)
https://doi.org/10.1016/j.jcp.2019.02.028

Modeling of a diffusion with aggregation: rigorous derivation and numerical simulation

Li Chen, Simone Göttlich and Stephan Knapp
ESAIM: Mathematical Modelling and Numerical Analysis 52 (2) 567 (2018)
https://doi.org/10.1051/m2an/2018028

Global Solution for the Spatially Inhomogeneous Non-cutoff Kac Equation

Tong Yang and Hongjun Yu
SIAM Journal on Mathematical Analysis 50 (4) 4503 (2018)
https://doi.org/10.1137/17M1135955

Zoology of a Nonlocal Cross-Diffusion Model for Two Species

José A. Carrillo, Yanghong Huang and Markus Schmidtchen
SIAM Journal on Applied Mathematics 78 (2) 1078 (2018)
https://doi.org/10.1137/17M1128782

Geometry of minimizers for the interaction energy with mildly repulsive potentials

J.A. Carrillo, A. Figalli and F.S. Patacchini
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 34 (5) 1299 (2017)
https://doi.org/10.1016/j.anihpc.2016.10.004

Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension

Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey and Jing Wang
Communications on Pure & Applied Analysis 16 (3) 1013 (2017)
https://doi.org/10.3934/cpaa.2017049

Swarm Equilibria in Domains with Boundaries

R. C. Fetecau and M. Kovacic
SIAM Journal on Applied Dynamical Systems 16 (3) 1260 (2017)
https://doi.org/10.1137/17M1123900

Geodesically convex energies and confinement of solutions for a multi-component system of nonlocal interaction equations

Jonathan Zinsl
Nonlinear Differential Equations and Applications NoDEA 23 (4) (2016)
https://doi.org/10.1007/s00030-016-0399-5

Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms

José A. Carrillo, Helene Ranetbauer and Marie-Therese Wolfram
Journal of Computational Physics 327 186 (2016)
https://doi.org/10.1016/j.jcp.2016.09.040

The Regularity of the Boundary of a Multidimensional Aggregation Patch

A. Bertozzi, J. Garnett, T. Laurent and J. Verdera
SIAM Journal on Mathematical Analysis 48 (6) 3789 (2016)
https://doi.org/10.1137/15M1033125

On minimizers of interaction functionals with competing attractive and repulsive potentials

Razvan C. Fetecau, Ihsan Topaloglu and Rustum Choksi
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 32 (6) 1283 (2015)
https://doi.org/10.1016/j.anihpc.2014.09.004

PRIMA 2015: Principles and Practice of Multi-Agent Systems

Stefania Monica and Federico Bergenti
Lecture Notes in Computer Science, PRIMA 2015: Principles and Practice of Multi-Agent Systems 9387 483 (2015)
https://doi.org/10.1007/978-3-319-25524-8_30

Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure

J.A. Carrillo, Y. Huang, M.C. Santos and J.L. Vázquez
Journal of Differential Equations 258 (3) 736 (2015)
https://doi.org/10.1016/j.jde.2014.10.003

Opinion dynamics: inhomogeneous Boltzmann-type equations modelling opinion leadership and political segregation

Bertram Düring and Marie-Therese Wolfram
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471 (2182) 20150345 (2015)
https://doi.org/10.1098/rspa.2015.0345

A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure

José A. Carrillo, Alina Chertock and Yanghong Huang
Communications in Computational Physics 17 (1) 233 (2015)
https://doi.org/10.4208/cicp.160214.010814a

Remarks on a class of kinetic models of granular media: Asymptotics and entropy bounds

Reinhard Illner, Guillaume Carlier and Martial Agueh
Kinetic and Related Models 8 (2) 201 (2015)
https://doi.org/10.3934/krm.2015.8.201

Gradient flows for non-smooth interaction potentials

J.A. Carrillo, S. Lisini and E. Mainini
Nonlinear Analysis: Theory, Methods & Applications 100 122 (2014)
https://doi.org/10.1016/j.na.2014.01.010

Nonlocal interactions by repulsive–attractive potentials: Radial ins/stability

D. Balagué, J.A. Carrillo, T. Laurent and G. Raoul
Physica D: Nonlinear Phenomena 260 5 (2013)
https://doi.org/10.1016/j.physd.2012.10.002

Singular patterns for an aggregation model with a confining potential

Theodore Kolokolnikov, Yanghong Huang and Mark Pavlovski
Physica D: Nonlinear Phenomena 260 65 (2013)
https://doi.org/10.1016/j.physd.2012.10.009

Emergent behaviour in multi-particle systems with non-local interactions

Theodore Kolokolnikov, José A. Carrillo, Andrea Bertozzi, Razvan Fetecau and Mark Lewis
Physica D: Nonlinear Phenomena 260 1 (2013)
https://doi.org/10.1016/j.physd.2013.06.011

Stability and clustering of self-similar solutions of aggregation equations

Hui Sun, David Uminsky and Andrea L. Bertozzi
Journal of Mathematical Physics 53 (11) (2012)
https://doi.org/10.1063/1.4745180

AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS

ANDREA L. BERTOZZI, THOMAS LAURENT and FLAVIEN LÉGER
Mathematical Models and Methods in Applied Sciences 22 (supp01) (2012)
https://doi.org/10.1142/S0218202511400057

Confinement in nonlocal interaction equations

J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepčev
Nonlinear Analysis: Theory, Methods & Applications 75 (2) 550 (2012)
https://doi.org/10.1016/j.na.2011.08.057

Characterization of Radially Symmetric Finite Time Blowup in Multidimensional Aggregation Equations

Andrea L. Bertozzi, John B. Garnett and Thomas Laurent
SIAM Journal on Mathematical Analysis 44 (2) 651 (2012)
https://doi.org/10.1137/11081986X

Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations

J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev
Duke Mathematical Journal 156 (2) (2011)
https://doi.org/10.1215/00127094-2010-211

Stability of ring patterns arising from two-dimensional particle interactions

Theodore Kolokolnikov, Hui Sun, David Uminsky and Andrea L. Bertozzi
Physical Review E 84 (1) (2011)
https://doi.org/10.1103/PhysRevE.84.015203

Lp theory for the multidimensional aggregation equation

Andrea L. Bertozzi, Thomas Laurent and Jesús Rosado
Communications on Pure and Applied Mathematics 64 (1) 45 (2011)
https://doi.org/10.1002/cpa.20334

STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

KLEMENS FELLNER and GAËL RAOUL
Mathematical Models and Methods in Applied Sciences 20 (12) 2267 (2010)
https://doi.org/10.1142/S0218202510004921

Boltzmann and Fokker-Planck Equations Modelling Opinion Formation in the Presence of Strong Leaders

Bertram Düring, Peter A. Markowich, Jan-Frederik Pietschmann and Marie-Therese Wolfram
SSRN Electronic Journal (2009)
https://doi.org/10.2139/ssrn.1399345

The behavior of solutions of multidimensional aggregation equations with mildly singular interaction kernels

Andrea L. Bertozzi and Thomas Laurent
Chinese Annals of Mathematics, Series B 30 (5) 463 (2009)
https://doi.org/10.1007/s11401-009-0191-5

Blow-up in multidimensional aggregation equations with mildly singular interaction kernels

Andrea L Bertozzi, José A Carrillo and Thomas Laurent
Nonlinearity 22 (3) 683 (2009)
https://doi.org/10.1088/0951-7715/22/3/009

Boltzmann and Fokker–Planck equations modelling opinion formation in the presence of strong leaders

Bertram Düring, Peter Markowich, Jan-Frederik Pietschmann and Marie-Therese Wolfram
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465 (2112) 3687 (2009)
https://doi.org/10.1098/rspa.2009.0239

Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak–Keller–Segel Model

Adrien Blanchet, Vincent Calvez and José A. Carrillo
SIAM Journal on Numerical Analysis 46 (2) 691 (2008)
https://doi.org/10.1137/070683337

Kinetic Approach to Long time Behavior of Linearized Fast Diffusion Equations

María J. Cáceres and Giuseppe Toscani
Journal of Statistical Physics 128 (4) 883 (2007)
https://doi.org/10.1007/s10955-007-9329-6

First‐Order Continuous Models of Opinion Formation

Giacomo Aletti, Giovanni Naldi and Giuseppe Toscani
SIAM Journal on Applied Mathematics 67 (3) 837 (2007)
https://doi.org/10.1137/060658679

Lagrangian Numerical Approximations to One‐Dimensional Convolution‐Diffusion Equations

Laurent Gosse and Giuseppe Toscani
SIAM Journal on Scientific Computing 28 (4) 1203 (2006)
https://doi.org/10.1137/050628015

Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media

José A. Carrillo, Robert J. McCann and Cédric Villani
Archive for Rational Mechanics and Analysis 179 (2) 217 (2006)
https://doi.org/10.1007/s00205-005-0386-1

Systems, Control, Modeling and Optimization

E. Ferrari, G. Naldi and G. Toscani
IFIP International Federation for Information Processing, Systems, Control, Modeling and Optimization 202 151 (2006)
https://doi.org/10.1007/0-387-33882-9_14

Cooling Process for Inelastic Boltzmann Equations for Hard Spheres, Part I: The Cauchy Problem

S. Mischler, C. Mouhot and M. Rodriguez Ricard
Journal of Statistical Physics 124 (2-4) 655 (2006)
https://doi.org/10.1007/s10955-006-9096-9

Long-Time Behavior of Nonautonomous Fokker-Planck Equations and Cooling of Granular Gases

B. Lods and G. Toscani
Ukrainian Mathematical Journal 57 (6) 923 (2005)
https://doi.org/10.1007/s11253-005-0240-5

A spatially homogeneous Boltzmann equation for elastic, inelastic and coalescing collisions

Nicolas Fournier and Stéphane Mischler
Journal de Mathématiques Pures et Appliquées 84 (9) 1173 (2005)
https://doi.org/10.1016/j.matpur.2005.04.003

Accurate numerical methods for the collisional motion of (heated) granular flows

Francis Filbet, Lorenzo Pareschi and Giuseppe Toscani
Journal of Computational Physics 202 (1) 216 (2005)
https://doi.org/10.1016/j.jcp.2004.06.023

Modeling and Computational Methods for Kinetic Equations

Lorenzo Pareschi and Giuseppe Toscani
Modeling and Simulation in Science, Engineering and Technology, Modeling and Computational Methods for Kinetic Equations 259 (2004)
https://doi.org/10.1007/978-0-8176-8200-2_9

Self-similar solutions of a nonlinear friction equation in higher dimensions

Marzia Bisi and Giuseppe Toscani
ANNALI DELL UNIVERSITA DI FERRARA 50 (1) 91 (2004)
https://doi.org/10.1007/BF02825345

Spectral methods for one-dimensional kinetic models of granular flows and numerical quasi elastic limit

Giovanni Naldi, Lorenzo Pareschi and Giuseppe Toscani
ESAIM: Mathematical Modelling and Numerical Analysis 37 (1) 73 (2003)
https://doi.org/10.1051/m2an:2003019

Stochastic interacting particle systems and nonlinear kinetic equations

Andreas Eibeck and Wolfgang Wagner
The Annals of Applied Probability 13 (3) (2003)
https://doi.org/10.1214/aoap/1060202829

On the one-dimensional Boltzmann equation for granular flows

Dario Benedetto and Mario Pulvirenti
ESAIM: Mathematical Modelling and Numerical Analysis 35 (5) 899 (2001)
https://doi.org/10.1051/m2an:2001141