Free Access
Issue
ESAIM: M2AN
Volume 34, Number 6, November/December 2000
Page(s) 1277 - 1291
DOI https://doi.org/10.1051/m2an:2000127
Published online 15 April 2002
  1. R. Alexandre and C. Villani, On the Boltzmann equation for long range interactions and the Landau approximation in plasma physics. Preprint DMA, École Normale Supérieure (1999). [Google Scholar]
  2. L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation. Arch. Rational Mech. Anal. 77 (1981) 11-21. [CrossRef] [Google Scholar]
  3. G.I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge Univ. Press, New York (1996). [Google Scholar]
  4. D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media. RAIRO Modél. Math. Anal. Numér. 31 (1997) 615-641. [MathSciNet] [Google Scholar]
  5. D. Benedetto, E. Caglioti and M. Pulvirenti, Erratum: A kinetic equation for granular media [RAIRO Modél. Math. Anal. Numér. 31 (1997) 615-641]. ESAIM: M2AN 33 (1999) 439-441. [CrossRef] [EDP Sciences] [Google Scholar]
  6. C. Bizon, J.B. Shattuck, M.D. Swift, W.D. McCormick and H.L. Swinney, Pattern in 2D vertically oscillated granular layers: simulation and experiments. Phys. Rev. Lett. 80 (1998) 57-60. [CrossRef] [Google Scholar]
  7. A.V. Bobylev, J.A-Carrillo and I. Gamba, On some properties of kinetic and hydrodynamics equations for inelastic interactions. J. Statist. Phys. 98 (2000) 743-773. [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Cercignani, R. Illner and M. Pulvirenti, The mathematical theory of dilute gases. Springer Ser. Appl. Math. Sci. 106, Springer-Verlag, New York (1994). [Google Scholar]
  9. L. Desvillettes, About the regularizing properties of the non-cut-off Kac equation. Comm. Math. Phys. 168 (1995) 417-440. [CrossRef] [MathSciNet] [Google Scholar]
  10. Y. Du, H. Li and L.P. Kadanoff, Breakdown of hydrodynamics in a one-dimensional system of inelastic particles. Phys. Rev. Lett. 74 (1995) 1268-1271. [CrossRef] [PubMed] [Google Scholar]
  11. D. Goldman, M.D. Shattuck, C. Bizon, W.D. McCormick, J.B. Swift and H.L. Swinney, Absence of inelastic collapse in a realistic three ball model. Phys. Rev. E 57 (1998) 4831-4833. [CrossRef] [Google Scholar]
  12. I. Goldhirsch, Scales and kinetics of granular flows. Chaos 9 (1999) 659-672. [CrossRef] [PubMed] [Google Scholar]
  13. M. Kac, Probability and related topics in the physical sciences. New York (1959). [Google Scholar]
  14. L. Kantorovich, On translation of mass (in Russian). Dokl. AN SSSR 37 (1942) 227-229. [Google Scholar]
  15. L. Landau, Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung. Phys. Z. Sowjet. 10 (1936) 154. Trad.: The transport equation in the case of Coulomb interactions, in Collected papers of L.D. Landau, D. ter Haar Ed., Pergamon Press, Oxford (1981) 163-170. [Google Scholar]
  16. S. McNamara and W.R. Young, Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A 4 (1992) 496-504. [CrossRef] [Google Scholar]
  17. S. McNamara and W.R. Young, Kinetics of a one-dimensional granular medium in the quasi-elastic limit. Phys. Fluids A 5 (1993) 34-45. [CrossRef] [MathSciNet] [Google Scholar]
  18. G. Naldi, L. Pareschi and G. Toscani, Spectral methods for a singular Boltzmann equation for granular flows and numerical quasi elastic limit. Preprint (2000). [Google Scholar]
  19. G. Toscani, The grazing collision asymptotic of the non cut-off Kac equation. RAIRO Modél. Math. Anal. Numér. 32 (1998) 763-772. [MathSciNet] [Google Scholar]
  20. I. Vaida, Theory of statistical Inference and Information. Kluwer Academic Publishers, Dordrecht (1989). [Google Scholar]
  21. L.N. Vasershtein, Markov processes on countable product space describing large systems of automata (in Russian). Problemy Peredachi Informatsii 5 (1969) 64-73. [Google Scholar]
  22. C. Villani, Contribution à l'étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas. Ph.D. thesis, Univ. Paris-Dauphine (1998). [Google Scholar]
  23. C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rational Mech. Anal. 143 (1998) 273-307. [CrossRef] [MathSciNet] [Google Scholar]
  24. C. Villani, Contribution à l'étude mathématique des collisions en théorie cinétique. Ceremade, Paris IX-Dauphine, January 24 (2000). [Google Scholar]
  25. V.M. Zolotarev, Probability Metrics. Theory Probab. Appl. 28 (1983) 278-302. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you