The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Martin Brühl , Martin Hanke , Michael Pidcock
ESAIM: M2AN, 35 3 (2001) 595-605
Published online: 2002-04-15
This article has been cited by the following article(s):
60 articles
Reconstruction of Cracks in Calderón’s Inverse Conductivity Problem Using Energy Comparisons
Henrik Garde and Michael Vogelius SIAM Journal on Mathematical Analysis 56 (1) 727 (2024) https://doi.org/10.1137/23M1572416
On the well posedness and Steffensen’s based numerical approximation of an inverse Cauchy problem
H. Ouaissa, A. Chakib and A. Sadik Journal of Computational and Applied Mathematics 451 116040 (2024) https://doi.org/10.1016/j.cam.2024.116040
Real-time detection of small objects in transverse electric polarization: Evaluations on synthetic and experimental datasets
Junyong Eom and Won-Kwang Park AIMS Mathematics 9 (8) 22665 (2024) https://doi.org/10.3934/math.20241104
A regularization method based on level-sets for the problem of crack detection from electrical measurements
A De Cezaro, E Hafemann, A Leitão and A Osses Inverse Problems 39 (3) 035009 (2023) https://doi.org/10.1088/1361-6420/acb681
Regularized factorization method for a perturbed positive compact operator applied to inverse scattering
Isaac Harris Inverse Problems 39 (11) 115007 (2023) https://doi.org/10.1088/1361-6420/acfd59
Uniqueness' failure for the finite element Cauchy-Poisson's problem
F. Ben Belgacem, F. Jelassi and V. Girault Computers & Mathematics with Applications 135 77 (2023) https://doi.org/10.1016/j.camwa.2023.01.010
Full Discretization of Cauchy's Problem by Lavrentiev--Finite Element Method
Faker Ben Belgacem, Vivette Girault and Faten Jelassi SIAM Journal on Numerical Analysis 60 (2) 558 (2022) https://doi.org/10.1137/21M1401310
The factorization method and Capon’s method for random source identification in experimental aeroacoustics
Roland Griesmaier and Hans-Georg Raumer Inverse Problems 38 (11) 115004 (2022) https://doi.org/10.1088/1361-6420/ac90e4
The factorization method for cracks in electrical impedance tomography
Jun Guo and Xianghe Zhu Computational and Applied Mathematics 40 (3) (2021) https://doi.org/10.1007/s40314-021-01468-9
The regularization B-spline wavelet method for the inverse boundary problem of the Laplace equation from noisy data in an irregular domain
Xinming Zhang and Wenxuan Zeng Engineering Analysis with Boundary Elements 125 1 (2021) https://doi.org/10.1016/j.enganabound.2021.01.002
A uniformly valid model for the limiting behaviour of voltage potentials in the presence of thin inhomogeneities I. The case of an open mid-curve
M. Charnley and M.S. Vogelius Asymptotic Analysis 117 (3-4) 215 (2020) https://doi.org/10.3233/ASY-191553
DOF‐gathering stable generalized finite element methods for crack problems
Qinghui Zhang Numerical Methods for Partial Differential Equations 36 (6) 1209 (2020) https://doi.org/10.1002/num.22459
Numerical Method for Solving an Inverse Problem for Laplace’s Equation in a Domain with an Unknown Inner Boundary
S. V. Gavrilov Computational Mathematics and Mathematical Physics 59 (1) 59 (2019) https://doi.org/10.1134/S0965542519010093
Revealing cracks inside conductive bodies by electric surface measurements
Andreas Hauptmann, Masaru Ikehata, Hiromichi Itou and Samuli Siltanen Inverse Problems 35 (2) 025004 (2019) https://doi.org/10.1088/1361-6420/aaf273
Reconstruction of thin electromagnetic inhomogeneity without diagonal elements of a multi-static response matrix
Won-Kwang Park Inverse Problems 34 (9) 095008 (2018) https://doi.org/10.1088/1361-6420/aad20c
Fast identification of small perfectly conducting cracks without diagonal elements of multi-static response matrix
Won-Kwang Park Journal of Electromagnetic Waves and Applications 32 (18) 2490 (2018) https://doi.org/10.1080/09205071.2018.1518162
Identification of multiple cracks in 2D elasticity by means of the reciprocity principle and cluster analysis
Efim I Shifrin and Alexander V Kaptsov Inverse Problems 34 (1) 015009 (2018) https://doi.org/10.1088/1361-6420/aa9d74
Marc‐Alain Andoh, Duygu Kocaefe, Dipankar Bhattacharyay, Yasar Kocaefe, Daniel Marceau and Brigitte Morais 889 (2016) https://doi.org/10.1002/9781119274780.ch150
The enclosure method for an inverse problem arising from a spot welding
Masaru Ikehata, Hiromichi Itou and Akira Sasamoto Mathematical Methods in the Applied Sciences 39 (13) 3565 (2016) https://doi.org/10.1002/mma.3799
Light Metals 2016
Marc-Alain Andoh, Duygu Kocaefe, Dipankar Bhattacharyay, et al. Light Metals 2016 889 (2016) https://doi.org/10.1007/978-3-319-48251-4_150
Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularities
Qinghui Zhang, Ivo Babuška and Uday Banerjee Computer Methods in Applied Mechanics and Engineering 311 476 (2016) https://doi.org/10.1016/j.cma.2016.08.019
Handbook of Mathematical Methods in Imaging
Martin Hanke-Bourgeois and Andreas Kirsch Handbook of Mathematical Methods in Imaging 591 (2015) https://doi.org/10.1007/978-1-4939-0790-8_12
PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem
Ningning Yan, Guiquan Sun, Wei Gong and Lili Chang Inverse Problems and Imaging 9 (3) 791 (2015) https://doi.org/10.3934/ipi.2015.9.791
Adaptive meshing approach to identification of cracks with electrical impedance tomography
Jari P. Kaipio, Aku Seppänen and Kimmo Karhunen Inverse Problems and Imaging 8 (1) 127 (2014) https://doi.org/10.3934/ipi.2014.8.127
Variational regularization method of solving the Cauchy problem for Laplace's equation: Innovation of the Grad—Shafranov (GS) reconstruction
Bing Yan and Si-Xun Huang Chinese Physics B 23 (10) 109402 (2014) https://doi.org/10.1088/1674-1056/23/10/109402
A direct sampling method for electrical impedance tomography
Yat Tin Chow, Kazufumi Ito and Jun Zou Inverse Problems 30 (9) 095003 (2014) https://doi.org/10.1088/0266-5611/30/9/095003
Handbook of Mathematical Methods in Imaging
Martin Hanke-Bourgeois and Andreas Kirsch Handbook of Mathematical Methods in Imaging 1 (2014) https://doi.org/10.1007/978-3-642-27795-5_12-5
The factorization method applied to cracks with impedance boundary conditions
Yosra Boukari and Houssem Haddar Inverse Problems & Imaging 7 (4) 1123 (2013) https://doi.org/10.3934/ipi.2013.7.1123
The Topological Gradient Method: From Optimal Design to Image Processing
Stanislas Larnier, Jérôme Fehrenbach and Mohamed Masmoudi Milan Journal of Mathematics 80 (2) 411 (2012) https://doi.org/10.1007/s00032-012-0196-5
Reciprocity principle for the detection of planar cracks in anisotropic elastic material
P Steinhorst and A-M Sändig Inverse Problems 28 (8) 085010 (2012) https://doi.org/10.1088/0266-5611/28/8/085010
Local Convergence of the Lavrentiev Method for the Cauchy Problem via a Carleman Inequality
Faker Ben Belgacem, Duc Thang Du and Faten Jelassi Journal of Scientific Computing 53 (2) 320 (2012) https://doi.org/10.1007/s10915-011-9571-6
A regularized Newton method for locating thin tubular conductivity inhomogeneities
Roland Griesmaier and Nuutti Hyvönen Inverse Problems 27 (11) 115008 (2011) https://doi.org/10.1088/0266-5611/27/11/115008
Handbook of Mathematical Methods in Imaging
Martin Hanke and Andreas Kirsch Handbook of Mathematical Methods in Imaging 501 (2011) https://doi.org/10.1007/978-0-387-92920-0_12
Imaging Schemes for Perfectly Conducting Cracks
Habib Ammari, Josselin Garnier, Hyonbae Kang, Won-Kwang Park and Knut SØlna SIAM Journal on Applied Mathematics 71 (1) 68 (2011) https://doi.org/10.1137/100800130
Reconstruction of Thin Tubular Inclusions in Three-Dimensional Domains Using Electrical Impedance Tomography
Roland Griesmaier SIAM Journal on Imaging Sciences 3 (3) 340 (2010) https://doi.org/10.1137/090764074
An iterative algorithm for a Cauchy problem in eddy-current modelling
Marián Slodička and Valdemar Melicher Applied Mathematics and Computation 217 (1) 237 (2010) https://doi.org/10.1016/j.amc.2010.05.054
Asymptotic Imaging of Perfectly Conducting Cracks
Habib Ammari, Hyeonbae Kang, Hyundae Lee and Won-Kwang Park SIAM Journal on Scientific Computing 32 (2) 894 (2010) https://doi.org/10.1137/090749013
Crack reconstruction using a level-set strategy
Diego Álvarez, Oliver Dorn, Natalia Irishina and Miguel Moscoso Journal of Computational Physics 228 (16) 5710 (2009) https://doi.org/10.1016/j.jcp.2009.04.038
The Identification of Thin Dielectric Objects from Far Field or Near Field Scattering Data
Noam Zeev and Fioralba Cakoni SIAM Journal on Applied Mathematics 69 (4) 1024 (2009) https://doi.org/10.1137/070711542
From restoration by topological gradient to medical image segmentation via an asymptotic expansion
Didier Auroux Mathematical and Computer Modelling 49 (11-12) 2191 (2009) https://doi.org/10.1016/j.mcm.2008.07.002
A level set method to reconstruct the discontinuity of the conductivity in EIT
WenBin Chen, Jin Cheng, JunShan Lin and LiFeng Wang Science in China Series A: Mathematics 52 (1) 29 (2009) https://doi.org/10.1007/s11425-008-0156-2
Image Processing by Topological Asymptotic Expansion
Didier Auroux and Mohamed Masmoudi Journal of Mathematical Imaging and Vision 33 (2) 122 (2009) https://doi.org/10.1007/s10851-008-0121-2
The Factorization Method Applied to the Complete Electrode Model of Impedance Tomography
Armin Lechleiter, Nuutti Hyvönen and Harri Hakula SIAM Journal on Applied Mathematics 68 (4) 1097 (2008) https://doi.org/10.1137/070683295
Analytic approximation with real constraints, with applications to inverse diffusion problems
J. Leblond, J.-P. Marmorat and J. R. Partington jiip 16 (1) 89 (2008) https://doi.org/10.1515/jiip.2008.007
The enclosure method for an inverse crack problem and the Mittag–Leffler function
Masaru Ikehata and Takashi Ohe Inverse Problems 24 (1) 015006 (2008) https://doi.org/10.1088/0266-5611/24/1/015006
A modified collocation Trefftz method for the inverse Cauchy problem of Laplace equation
Chein-Shan Liu Engineering Analysis with Boundary Elements 32 (9) 778 (2008) https://doi.org/10.1016/j.enganabound.2007.12.002
Factorization method and irregular inclusions in electrical impedance tomography
Bastian Gebauer and Nuutti Hyvönen Inverse Problems 23 (5) 2159 (2007) https://doi.org/10.1088/0266-5611/23/5/020
Reconstruction of a linear crack in an isotropic elastic body from a single set of measured data
Masaru Ikehata and Hiromichi Itou Inverse Problems 23 (2) 589 (2007) https://doi.org/10.1088/0266-5611/23/2/008
On Cauchy's problem: II. Completion, regularization and approximation
Mejdi Azaïez, Faker Ben Belgacem and Henda El Fekih Inverse Problems 22 (4) 1307 (2006) https://doi.org/10.1088/0266-5611/22/4/012
A regularization technique for the factorization method
Armin Lechleiter Inverse Problems 22 (5) 1605 (2006) https://doi.org/10.1088/0266-5611/22/5/006
Newton regularizations for impedance tomography: a numerical study
Armin Lechleiter and Andreas Rieder Inverse Problems 22 (6) 1967 (2006) https://doi.org/10.1088/0266-5611/22/6/004
On Cauchy's problem: I. A variational Steklov–Poincaré theory
Faker Ben Belgacem and Henda El Fekih Inverse Problems 21 (6) 1915 (2005) https://doi.org/10.1088/0266-5611/21/6/008
ON THE USE OF THE RECIPROCITY-GAP FUNCTIONAL IN INVERSE SCATTERING FROM PLANAR CRACKS
AMEL BEN ABDA, FABRICE DELBARY and HOUSSEM HADDAR Mathematical Models and Methods in Applied Sciences 15 (10) 1553 (2005) https://doi.org/10.1142/S0218202505000819
The Rational Spirit in Modern Continuum Mechanics
Masaru Ikehata and Gen Nakamura The Rational Spirit in Modern Continuum Mechanics 525 (2005) https://doi.org/10.1007/1-4020-2308-1_29
A modified frozen Newton method to identify a cavity by means of boundary measurements
T Ha-Duong, M Jaoua and F Menif Mathematics and Computers in Simulation 66 (4-5) 355 (2004) https://doi.org/10.1016/j.matcom.2004.02.003
Geometric Methods in Inverse Problems and PDE Control
Kurt Bryan and Michael S. Vogelius The IMA Volumes in Mathematics and its Applications, Geometric Methods in Inverse Problems and PDE Control 137 25 (2004) https://doi.org/10.1007/978-1-4684-9375-7_3
Reconstruction of cracks in an inhomogeneous anisotropic elastic medium
Gen Nakamura, Gunther Uhlmann and Jenn-Nan Wang Journal de Mathématiques Pures et Appliquées 82 (10) 1251 (2003) https://doi.org/10.1016/S0021-7824(03)00072-2
Recent progress in electrical impedance tomography
Martin Hanke and Martin Brühl Inverse Problems 19 (6) S65 (2003) https://doi.org/10.1088/0266-5611/19/6/055
Complex geometrical optics solutions and inverse crack problems
Masaru Ikehata Inverse Problems 19 (6) 1385 (2003) https://doi.org/10.1088/0266-5611/19/6/009
Line segment crack recovery from incomplete boundary data
Amel Ben Abda, Moez Kallel, Juliette Leblond and Jean-Paul Marmorat Inverse Problems 18 (4) 1057 (2002) https://doi.org/10.1088/0266-5611/18/4/308