Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Stabilised Variational Multi-scale Finite Element Formulations for Viscoelastic Fluids

Ernesto Castillo, Laura Moreno, Joan Baiges and Ramon Codina
Archives of Computational Methods in Engineering 28 (3) 1987 (2021)
https://doi.org/10.1007/s11831-020-09526-x

Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem

Ramon Codina and Laura Moreno
ESAIM: Mathematical Modelling and Numerical Analysis 55 S279 (2021)
https://doi.org/10.1051/m2an/2020038

A posteriori error analysis of an augmented fully mixed formulation for the nonisothermal Oldroyd–Stokes problem

Sergio Caucao, Gabriel N. Gatica and Ricardo Oyarzúa
Numerical Methods for Partial Differential Equations 35 (1) 295 (2019)
https://doi.org/10.1002/num.22301

Time-dependent semidiscrete analysis of the viscoelastic fluid flow problem using a variational multiscale stabilized formulation

Gabriel R Barrenechea, Ernesto Castillo and Ramon Codina
IMA Journal of Numerical Analysis 39 (2) 792 (2019)
https://doi.org/10.1093/imanum/dry018

A Study on the Galerkin Least-Squares Method for the Oldroyd-B Model

Tsu-Fen Chen, Hyesuk Lee and Chia-Chen Liu
Computational Methods in Applied Mathematics 18 (2) 181 (2018)
https://doi.org/10.1515/cmam-2017-0022

Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange–Galerkin method. Part II: A linear scheme

Mária Lukáčová–Medvid’ová, Hana Mizerová, Hirofumi Notsu and Masahisa Tabata
ESAIM: Mathematical Modelling and Numerical Analysis 51 (5) 1663 (2017)
https://doi.org/10.1051/m2an/2017032

Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange–Galerkin method. Part I: A nonlinear scheme

Mária Lukáčová–Medvid’ová, Hana Mizerová, Hirofumi Notsu and Masahisa Tabata
ESAIM: Mathematical Modelling and Numerical Analysis 51 (5) 1637 (2017)
https://doi.org/10.1051/m2an/2016078

Influence of the Weißenberg number on the stability of Oldroyd kind fluids

N. Scurtu and E. Bänsch
Asia-Pacific Journal of Chemical Engineering 5 (4) 657 (2010)
https://doi.org/10.1002/apj.384

Partial Differential Equations

Andrea Bonito, Alexandre Caboussat, Marco Picasso and Jacques Rappaz
Computational Methods in Applied Sciences, Partial Differential Equations 16 187 (2008)
https://doi.org/10.1007/978-1-4020-8758-5_10

A Continuous Interior Penalty Method for Viscoelastic Flows

Andrea Bonito and Erik Burman
SIAM Journal on Scientific Computing 30 (3) 1156 (2008)
https://doi.org/10.1137/060677033

Mathematical and numerical analysis of a simplified time-dependent viscoelastic flow

Andrea Bonito, Philippe Clément and Marco Picasso
Numerische Mathematik 107 (2) 213 (2007)
https://doi.org/10.1007/s00211-007-0085-y

Numerical simulation of 3D viscoelastic flows with free surfaces

Andrea Bonito, Marco Picasso and Manuel Laso
Journal of Computational Physics 215 (2) 691 (2006)
https://doi.org/10.1016/j.jcp.2005.11.013

Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows

Andrea Bonito, Philippe Clément and Marco Picasso
ESAIM: Mathematical Modelling and Numerical Analysis 40 (4) 785 (2006)
https://doi.org/10.1051/m2an:2006030

Residual a posteriori error estimator for a three-field model of a non-linear generalized Stokes problem

Vincent J. Ervin and Timothy N. Phillips
Computer Methods in Applied Mechanics and Engineering 195 (19-22) 2599 (2006)
https://doi.org/10.1016/j.cma.2005.05.019

A posteriori error estimation and adaptive computation of viscoelastic fluid flow

Vincent J. Ervin and Louis N. Ntasin
Numerical Methods for Partial Differential Equations 21 (2) 297 (2005)
https://doi.org/10.1002/num.20038