Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Stable Vortex Particle Method Formulation for Meshless Large-Eddy Simulation

Eduardo J. Alvarez and Andrew Ning
AIAA Journal 62 (2) 637 (2024)
https://doi.org/10.2514/1.J063045

Large-Eddy Simulations with remeshed Vortex methods: An assessment and calibration of subgrid-scale models

Marthe de Crouy-Chanel, Chloé Mimeau, Iraj Mortazavi, Alessandro Mariotti and Maria Vittoria Salvetti
Computers & Fluids 277 106287 (2024)
https://doi.org/10.1016/j.compfluid.2024.106287

A Hybrid Non-Linear Unsteady Vortex Lattice-Vortex Particle Method for Rotor Blades Aerodynamic Simulations

Vincent Proulx-Cabana, Minh Tuan Nguyen, Sebastien Prothin, Guilhem Michon and Eric Laurendeau
Fluids 7 (2) 81 (2022)
https://doi.org/10.3390/fluids7020081

On the analysis of a geometrically selective turbulence model

Nejmeddine Chorfi, Mohamed Abdelwahed and Luigi C. Berselli
Advances in Nonlinear Analysis 9 (1) 1402 (2020)
https://doi.org/10.1515/anona-2020-0057

Global regularity criterion for the Navier‐Stokes equations based on the direction of vorticity

Zujin Zhang, Weihua Wang and Yong Zhou
Mathematical Methods in the Applied Sciences 42 (18) 7126 (2019)
https://doi.org/10.1002/mma.5818

An extension and simpler proof of Berselli–Córdoba’s geometric regularity condition for the Navier–Stokes system

Zujin Zhang, Weihua Wang and Xian Yang
Computers & Mathematics with Applications 77 (3) 765 (2019)
https://doi.org/10.1016/j.camwa.2018.10.018

Turbulent structures of shock-wave diffraction over 90° convex corner

V. Soni, A. Chaudhuri, N. Brahmi and A. Hadjadj
Physics of Fluids 31 (8) (2019)
https://doi.org/10.1063/1.5113976

Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Hugo Beirão da Veiga, Yoshikazu Giga and Zoran Grujić
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids 901 (2018)
https://doi.org/10.1007/978-3-319-13344-7_18

Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Hugo Beirão da Veiga, Yoshikazu Giga and Zoran Grujić
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids 1 (2016)
https://doi.org/10.1007/978-3-319-10151-4_18-1

On a family of results concerning direction of vorticity and regularity for the Navier–Stokes equations

H. Beirão da Veiga
ANNALI DELL'UNIVERSITA' DI FERRARA 60 (1) 23 (2014)
https://doi.org/10.1007/s11565-014-0206-3

Direction of Vorticity and Smoothness of Viscous Fluid Flows Subjected to Boundary Constraints

H. Beirão da Veiga
Acta Applicandae Mathematicae 132 (1) 63 (2014)
https://doi.org/10.1007/s10440-014-9891-2

Analysis of Viscous Flow Around an Impulsively Started Marine Propeller Using VIC(Vortex In Cell) Method

Jun-Hyeok Lee, Yoo-Chul Kim, Youn-Mo Lee and Jung-Chun Suh
Journal of the Society of Naval Architects of Korea 49 (1) 26 (2012)
https://doi.org/10.3744/SNAK.2012.49.1.26

Some criteria concerning the vorticity and the problem of global regularity for the 3D Navier–Stokes equations

Luigi C. Berselli
ANNALI DELL'UNIVERSITA' DI FERRARA 55 (2) 209 (2009)
https://doi.org/10.1007/s11565-009-0076-2

Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations

Roger Cocle, Grégoire Winckelmans and Goéric Daeninck
Journal of Computational Physics 227 (21) 9091 (2008)
https://doi.org/10.1016/j.jcp.2007.10.010

Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

Jean-Luc Guermond and Serge Prudhomme
ESAIM: Mathematical Modelling and Numerical Analysis 37 (6) 893 (2003)
https://doi.org/10.1051/m2an:2003060