The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Americo Marrocco
ESAIM: M2AN, 37 4 (2003) 617-630
Published online: 2003-11-15
This article has been cited by the following article(s):
63 articles
THE CONVERGENCE OF THE FINITE ELEMENT APPROXIMATION TO THE WEAK SOLUTION OF ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH ADDITIONAL SELF-DIFFUSION TERM
Mohammed Homod Hashim and Akil J. Harfash Journal of Mathematical Sciences (2024) https://doi.org/10.1007/s10958-024-07201-1
Properties of the generalized Chavy-Waddy–Kolokolnikov model for description of bacterial colonies
Nikolay A Kudryashov, Aleksandr A Kutukov and Sofia F Lavrova Communications in Nonlinear Science and Numerical Simulation 128 107645 (2024) https://doi.org/10.1016/j.cnsns.2023.107645
The collective dynamics of a stochastic Port-Hamiltonian self-driven agent model in one dimension
Matthias Ehrhardt, Thomas Kruse and Antoine Tordeux ESAIM: Mathematical Modelling and Numerical Analysis 58 (2) 515 (2024) https://doi.org/10.1051/m2an/2024004
Finite element numerical schemes for a chemo-attraction and consumption model
F. Guillén-González and G. Tierra Journal of Computational and Applied Mathematics 441 115676 (2024) https://doi.org/10.1016/j.cam.2023.115676
A Review on the Analysis and Optimal Control of Chemotaxis-Consumption Models
André Luiz Corrêa Vianna Filho and Francisco Guillén-González SeMA Journal (2024) https://doi.org/10.1007/s40324-024-00362-8
Direct Discontinuous Galerkin Method with Interface Correction for the Keller-Segel Chemotaxis Model
Xinghui Zhong, Changxin Qiu and Jue Yan Journal of Scientific Computing 101 (1) (2024) https://doi.org/10.1007/s10915-024-02648-5
Finite element analysis of chemotaxis-growth model with indirect attractant production and logistic source
Sattar M. Hassan and Akil J. Harfash International Journal of Computer Mathematics 100 (4) 745 (2023) https://doi.org/10.1080/00207160.2022.2150519
Unconditionally Energy-Stable Finite Element Scheme for the Chemotaxis-Fluid System
Yangyang Tang, Guang-an Zou and Jian Li Journal of Scientific Computing 95 (1) (2023) https://doi.org/10.1007/s10915-023-02118-4
Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport
Harald Garcke and Dennis Trautwein Journal of Numerical Mathematics 30 (4) 295 (2022) https://doi.org/10.1515/jnma-2021-0094
Finite Element Analysis of the Two-Competing-Species Keller–Segel Chemotaxis Model
Sattar M. Hassan and Akil J. Harfash Computational Mathematics and Modeling 33 (4) 443 (2022) https://doi.org/10.1007/s10598-023-09586-1
Finite Element Analysis of Attraction-Repulsion Chemotaxis System. Part I: Space Convergence
Mohammed Homod Hashim and Akil J. Harfash Communications on Applied Mathematics and Computation 4 (3) 1011 (2022) https://doi.org/10.1007/s42967-021-00124-7
Finite element approximation of a Keller–Segel model with additional self- and cross-diffusion terms and a logistic source
Sattar M. Hassan and Akil J. Harfash Communications in Nonlinear Science and Numerical Simulation 104 106063 (2022) https://doi.org/10.1016/j.cnsns.2021.106063
Third order positivity-preserving direct discontinuous Galerkin method with interface correction for chemotaxis Keller-Segel equations
Changxin Qiu, Qingyuan Liu and Jue Yan Journal of Computational Physics 433 110191 (2021) https://doi.org/10.1016/j.jcp.2021.110191
Finite element analysis of a Keller–Segel model with additional cross-diffusion and logistic source. Part I: Space convergence
Mohammed H. Hashim and Akil J. Harfash Computers & Mathematics with Applications 89 44 (2021) https://doi.org/10.1016/j.camwa.2021.02.006
A chemorepulsion model with superlinear production: analysis of the continuous problem and two approximately positive and energy-stable schemes
F. Guillén-González, M. A. Rodríguez-Bellido and D. A. Rueda-Gómez Advances in Computational Mathematics 47 (6) (2021) https://doi.org/10.1007/s10444-021-09907-1
Waves in Flows
Francisco Guillén-González, María Ángeles Rodríguez-Bellido and Diego Armando Rueda-Gómez Advances in Mathematical Fluid Mechanics, Waves in Flows 53 (2021) https://doi.org/10.1007/978-3-030-68144-9_2
Keller-Segel Chemotaxis Models: A Review
Gurusamy Arumugam and Jagmohan Tyagi Acta Applicandae Mathematicae 171 (1) (2021) https://doi.org/10.1007/s10440-020-00374-2
An Analysis on the Finite Volume Schemes and the Discrete Lyapunov Inequalities for the Chemotaxis System
Guanyu Zhou Journal of Scientific Computing 87 (2) (2021) https://doi.org/10.1007/s10915-021-01466-3
Numerical analysis for a chemotaxis-Navier–Stokes system
Abelardo Duarte-Rodríguez, María Ángeles Rodríguez-Bellido, Diego A. Rueda-Gómez and Élder J. Villamizar-Roa ESAIM: Mathematical Modelling and Numerical Analysis 55 S417 (2021) https://doi.org/10.1051/m2an/2020039
Study of a chemo-repulsion model with quadratic production. Part II: Analysis of an unconditionally energy-stable fully discrete scheme
F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez Computers & Mathematics with Applications 80 (5) 636 (2020) https://doi.org/10.1016/j.camwa.2020.04.010
Numerical solution for the chemotaxis model by finite difference method
C. Messikh, M. S. H. Chowdhury, A. Guesmia, et al. Journal of Physics: Conference Series 1489 (1) 012008 (2020) https://doi.org/10.1088/1742-6596/1489/1/012008
Cellular sociology regulates the hierarchical spatial patterning and organization of cells in organisms
Shambavi Ganesh, Beliz Utebay, Jeremy Heit and Ahmet F. Coskun Open Biology 10 (12) (2020) https://doi.org/10.1098/rsob.200300
Positive nonlinear DDFV scheme for a degenerate parabolic system describing chemotaxis
Moustafa Ibrahim, El Houssaine Quenjel and Mazen Saad Computers & Mathematics with Applications 80 (12) 2972 (2020) https://doi.org/10.1016/j.camwa.2020.10.018
Study of a chemo-repulsion model with quadratic production. Part I: Analysis of the continuous problem and time-discrete numerical schemes
F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez Computers & Mathematics with Applications 80 (5) 692 (2020) https://doi.org/10.1016/j.camwa.2020.04.009
A Positivity Preserving Moving Mesh Finite Element Method for the Keller–Segel Chemotaxis Model
M. Sulman and T. Nguyen Journal of Scientific Computing 80 (1) 649 (2019) https://doi.org/10.1007/s10915-019-00951-0
Alina Chertock and Alexander Kurganov 109 (2019) https://doi.org/10.1007/978-3-030-20297-2_4
Energy Dissipative Local Discontinuous Galerkin Methods for Keller–Segel Chemotaxis Model
Li Guo, Xingjie Helen Li and Yang Yang Journal of Scientific Computing 78 (3) 1387 (2019) https://doi.org/10.1007/s10915-018-0813-8
355 (2018) https://doi.org/10.1002/9783527806577.biblio
High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems
Alina Chertock, Yekaterina Epshteyn, Hengrui Hu and Alexander Kurganov Advances in Computational Mathematics 44 (1) 327 (2018) https://doi.org/10.1007/s10444-017-9545-9
Local Discontinuous Galerkin Method for the Keller-Segel Chemotaxis Model
Xingjie Helen Li, Chi-Wang Shu and Yang Yang Journal of Scientific Computing 73 (2-3) 943 (2017) https://doi.org/10.1007/s10915-016-0354-y
The splitting mixed element method for parabolic equation and its application in chemotaxis model
Yuezhi Zhang and Jiansong Zhang Applied Mathematics and Computation 313 287 (2017) https://doi.org/10.1016/j.amc.2017.06.011
Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis
Guanyu Zhou and Norikazu Saito Numerische Mathematik 135 (1) 265 (2017) https://doi.org/10.1007/s00211-016-0793-2
A time semi-exponentially fitted scheme for chemotaxis-growth models
M. Akhmouch and M. Benzakour Amine Calcolo 54 (2) 609 (2017) https://doi.org/10.1007/s10092-016-0201-4
Chahrazed Messikh 325 (2017) https://doi.org/10.1109/MATHIT.2017.8259736
Characteristic splitting mixed finite element analysis of Keller–Segel chemotaxis models
Jiansong Zhang, Jiang Zhu and Rongpei Zhang Applied Mathematics and Computation 278 33 (2016) https://doi.org/10.1016/j.amc.2016.01.021
Semi-implicit finite volume schemes for a chemotaxis-growth model
M. Akhmouch and M. Benzakour Amine Indagationes Mathematicae 27 (3) 702 (2016) https://doi.org/10.1016/j.indag.2016.01.004
Numerical Simulations of Kinetic Models for Chemotaxis
Francis Filbet and Chang Yang SIAM Journal on Scientific Computing 36 (3) B348 (2014) https://doi.org/10.1137/130910208
Nonnegativity of exact and numerical solutions of some chemotactic models
Patrick De Leenheer, Jay Gopalakrishnan and Erica Zuhr Computers & Mathematics with Applications 66 (3) 356 (2013) https://doi.org/10.1016/j.camwa.2013.05.014
Blow-up dynamics for the aggregation equation with degenerate diffusion
Yao Yao and Andrea L. Bertozzi Physica D: Nonlinear Phenomena 260 77 (2013) https://doi.org/10.1016/j.physd.2013.01.009
Error analysis of a conservative
finite-element approximation for the Keller-Segel system of chemotaxis
Norikazu Saito Communications on Pure & Applied Analysis 11 (1) 339 (2012) https://doi.org/10.3934/cpaa.2012.11.339
Computational Modeling of Microabscess Formation
Alexandre Bittencourt Pigozzo, Gilson Costa Macedo, Rodrigo Weber dos Santos and Marcelo Lobosco Computational and Mathematical Methods in Medicine 2012 1 (2012) https://doi.org/10.1155/2012/736394
Upwind-Difference Potentials Method for Patlak-Keller-Segel Chemotaxis Model
Yekaterina Epshteyn Journal of Scientific Computing 53 (3) 689 (2012) https://doi.org/10.1007/s10915-012-9599-2
Modeling spatial adaptation of populations by a time non-local convection cross-diffusion evolution problem
Gonzalo Galiano Applied Mathematics and Computation 218 (8) 4587 (2011) https://doi.org/10.1016/j.amc.2011.10.041
Artificial Immune Systems
Alexandre Bittencourt Pigozzo, Gilson Costa Macedo, Rodrigo Weber dos Santos and Marcelo Lobosco Lecture Notes in Computer Science, Artificial Immune Systems 6825 95 (2011) https://doi.org/10.1007/978-3-642-22371-6_11
Euro-Par 2010 Parallel Processing Workshops
Alexandre Bittencourt Pigozzo, Marcelo Lobosco and Rodrigo Weber dos Santos Lecture Notes in Computer Science, Euro-Par 2010 Parallel Processing Workshops 6586 217 (2011) https://doi.org/10.1007/978-3-642-21878-1_27
Convergence of a Stochastic Particle Approximation for Measure Solutions of the 2D Keller-Segel System
Jan Haškovec and Christian Schmeiser Communications in Partial Differential Equations 36 (6) 940 (2011) https://doi.org/10.1080/03605302.2010.538783
Competing through altering the environment: A cross-diffusion population model coupled to transport–Darcy flow equations
Gonzalo Galiano and Julián Velasco Nonlinear Analysis: Real World Applications 12 (5) 2826 (2011) https://doi.org/10.1016/j.nonrwa.2011.04.009
Alexandre Bittencourt Pigozzo, Marcelo Lobosco and Rodrigo Weber dos Santos 67 (2010) https://doi.org/10.1109/SBAC-PADW.2010.12
Models of Self-Organizing Bacterial Communities and Comparisons with Experimental Observations
A. Marrocco, H. Henry, I. B. Holland, et al. Mathematical Modelling of Natural Phenomena 5 (1) 148 (2010) https://doi.org/10.1051/mmnp/20105107
Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System
Jan Haškovec and Christian Schmeiser Journal of Statistical Physics 135 (1) 133 (2009) https://doi.org/10.1007/s10955-009-9717-1
New Interior Penalty Discontinuous Galerkin Methods for the Keller�Segel Chemotaxis Model
Yekaterina Epshteyn and Alexander Kurganov SIAM Journal on Numerical Analysis 47 (1) 386 (2009) https://doi.org/10.1137/07070423X
Discontinuous Galerkin methods for the chemotaxis and haptotaxis models
Yekaterina Epshteyn Journal of Computational and Applied Mathematics 224 (1) 168 (2009) https://doi.org/10.1016/j.cam.2008.04.030
Conservative cross diffusions and pattern formation through relaxation
Mostafa Bendahmane, Thomas Lepoutre, Americo Marrocco and Benoît Perthame Journal de Mathématiques Pures et Appliquées 92 (6) 651 (2009) https://doi.org/10.1016/j.matpur.2009.05.003
Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model
Yekaterina Epshteyn and Ahmet Izmirlioglu Journal of Scientific Computing 40 (1-3) 211 (2009) https://doi.org/10.1007/s10915-009-9281-5
Infinite time aggregation for the critical Patlak‐Keller‐Segel model in ℝ2
Adrien Blanchet, José A. Carrillo and Nader Masmoudi Communications on Pure and Applied Mathematics 61 (10) 1449 (2008) https://doi.org/10.1002/cpa.20225
A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models
Alina Chertock and Alexander Kurganov Numerische Mathematik 111 (2) 169 (2008) https://doi.org/10.1007/s00211-008-0188-0
Infinite time aggregation for the critical Patlak-Keller-Segel model in ℝ2
Adrien Blanchet, José A. Carrillo and Nader Masmoudi Communications on Pure and Applied Mathematics (2007) https://doi.org/10.1002/cpa.20229
Modeling of Biological Materials
M. Thiriet Modeling and Simulation in Science, Engineering and Technology, Modeling of Biological Materials 33 (2007) https://doi.org/10.1007/978-0-8176-4411-6_2
THE SET OF CONCENTRATION FOR SOME HYPERBOLIC MODELS OF CHEMOTAXIS
LOBNA DERBEL and PIERRE EMMANUEL JABIN Journal of Hyperbolic Differential Equations 04 (02) 331 (2007) https://doi.org/10.1142/S021989160700115X
A finite volume scheme for the Patlak–Keller–Segel chemotaxis model
Francis Filbet Numerische Mathematik 104 (4) 457 (2006) https://doi.org/10.1007/s00211-006-0024-3
A Lyapunov function for a two-chemical species version of the chemotaxis model
V. Calvez and B. Perthame BIT Numerical Mathematics 46 (S1) 85 (2006) https://doi.org/10.1007/s10543-006-0086-8
Derivation of hyperbolic models for chemosensitive movement
Francis Filbet, Philippe Lauren�ot and Beno�t Perthame Journal of Mathematical Biology 50 (2) 189 (2005) https://doi.org/10.1007/s00285-004-0286-2
Optimal critical mass in the two dimensional Keller–Segel model in R2
Jean Dolbeault and Benoît Perthame Comptes Rendus. Mathématique 339 (9) 611 (2004) https://doi.org/10.1016/j.crma.2004.08.011