Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Finite element numerical schemes for a chemo-attraction and consumption model

F. Guillén-González and G. Tierra
Journal of Computational and Applied Mathematics 441 115676 (2024)
https://doi.org/10.1016/j.cam.2023.115676

Properties of the generalized Chavy-Waddy–Kolokolnikov model for description of bacterial colonies

Nikolay A Kudryashov, Aleksandr A Kutukov and Sofia F Lavrova
Communications in Nonlinear Science and Numerical Simulation 128 107645 (2024)
https://doi.org/10.1016/j.cnsns.2023.107645

Finite element analysis of chemotaxis-growth model with indirect attractant production and logistic source

Sattar M. Hassan and Akil J. Harfash
International Journal of Computer Mathematics 100 (4) 745 (2023)
https://doi.org/10.1080/00207160.2022.2150519

Unconditionally Energy-Stable Finite Element Scheme for the Chemotaxis-Fluid System

Yangyang Tang, Guang-an Zou and Jian Li
Journal of Scientific Computing 95 (1) (2023)
https://doi.org/10.1007/s10915-023-02118-4

Finite Element Analysis of Attraction-Repulsion Chemotaxis System. Part I: Space Convergence

Mohammed Homod Hashim and Akil J. Harfash
Communications on Applied Mathematics and Computation 4 (3) 1011 (2022)
https://doi.org/10.1007/s42967-021-00124-7

Finite Element Analysis of the Two-Competing-Species Keller–Segel Chemotaxis Model

Sattar M. Hassan and Akil J. Harfash
Computational Mathematics and Modeling 33 (4) 443 (2022)
https://doi.org/10.1007/s10598-023-09586-1

Finite element approximation of a Keller–Segel model with additional self- and cross-diffusion terms and a logistic source

Sattar M. Hassan and Akil J. Harfash
Communications in Nonlinear Science and Numerical Simulation 104 106063 (2022)
https://doi.org/10.1016/j.cnsns.2021.106063

Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport

Harald Garcke and Dennis Trautwein
Journal of Numerical Mathematics 30 (4) 295 (2022)
https://doi.org/10.1515/jnma-2021-0094

Third order positivity-preserving direct discontinuous Galerkin method with interface correction for chemotaxis Keller-Segel equations

Changxin Qiu, Qingyuan Liu and Jue Yan
Journal of Computational Physics 433 110191 (2021)
https://doi.org/10.1016/j.jcp.2021.110191

A chemorepulsion model with superlinear production: analysis of the continuous problem and two approximately positive and energy-stable schemes

F. Guillén-González, M. A. Rodríguez-Bellido and D. A. Rueda-Gómez
Advances in Computational Mathematics 47 (6) (2021)
https://doi.org/10.1007/s10444-021-09907-1

Numerical analysis for a chemotaxis-Navier–Stokes system

Abelardo Duarte-Rodríguez, María Ángeles Rodríguez-Bellido, Diego A. Rueda-Gómez and Élder J. Villamizar-Roa
ESAIM: Mathematical Modelling and Numerical Analysis 55 S417 (2021)
https://doi.org/10.1051/m2an/2020039

Finite element analysis of a Keller–Segel model with additional cross-diffusion and logistic source. Part I: Space convergence

Mohammed H. Hashim and Akil J. Harfash
Computers & Mathematics with Applications 89 44 (2021)
https://doi.org/10.1016/j.camwa.2021.02.006

Waves in Flows

Francisco Guillén-González, María Ángeles Rodríguez-Bellido and Diego Armando Rueda-Gómez
Advances in Mathematical Fluid Mechanics, Waves in Flows 53 (2021)
https://doi.org/10.1007/978-3-030-68144-9_2

Positive nonlinear DDFV scheme for a degenerate parabolic system describing chemotaxis

Moustafa Ibrahim, El Houssaine Quenjel and Mazen Saad
Computers & Mathematics with Applications 80 (12) 2972 (2020)
https://doi.org/10.1016/j.camwa.2020.10.018

Cellular sociology regulates the hierarchical spatial patterning and organization of cells in organisms

Shambavi Ganesh, Beliz Utebay, Jeremy Heit and Ahmet F. Coskun
Open Biology 10 (12) (2020)
https://doi.org/10.1098/rsob.200300

Study of a chemo-repulsion model with quadratic production. Part II: Analysis of an unconditionally energy-stable fully discrete scheme

F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez
Computers & Mathematics with Applications 80 (5) 636 (2020)
https://doi.org/10.1016/j.camwa.2020.04.010

Study of a chemo-repulsion model with quadratic production. Part I: Analysis of the continuous problem and time-discrete numerical schemes

F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez
Computers & Mathematics with Applications 80 (5) 692 (2020)
https://doi.org/10.1016/j.camwa.2020.04.009

A Positivity Preserving Moving Mesh Finite Element Method for the Keller–Segel Chemotaxis Model

M. Sulman and T. Nguyen
Journal of Scientific Computing 80 (1) 649 (2019)
https://doi.org/10.1007/s10915-019-00951-0

Energy Dissipative Local Discontinuous Galerkin Methods for Keller–Segel Chemotaxis Model

Li Guo, Xingjie Helen Li and Yang Yang
Journal of Scientific Computing 78 (3) 1387 (2019)
https://doi.org/10.1007/s10915-018-0813-8

High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems

Alina Chertock, Yekaterina Epshteyn, Hengrui Hu and Alexander Kurganov
Advances in Computational Mathematics 44 (1) 327 (2018)
https://doi.org/10.1007/s10444-017-9545-9

The splitting mixed element method for parabolic equation and its application in chemotaxis model

Yuezhi Zhang and Jiansong Zhang
Applied Mathematics and Computation 313 287 (2017)
https://doi.org/10.1016/j.amc.2017.06.011

Local Discontinuous Galerkin Method for the Keller-Segel Chemotaxis Model

Xingjie Helen Li, Chi-Wang Shu and Yang Yang
Journal of Scientific Computing 73 (2-3) 943 (2017)
https://doi.org/10.1007/s10915-016-0354-y

Finite volume methods for a Keller–Segel system: discrete energy, error estimates and numerical blow-up analysis

Guanyu Zhou and Norikazu Saito
Numerische Mathematik 135 (1) 265 (2017)
https://doi.org/10.1007/s00211-016-0793-2

Characteristic splitting mixed finite element analysis of Keller–Segel chemotaxis models

Jiansong Zhang, Jiang Zhu and Rongpei Zhang
Applied Mathematics and Computation 278 33 (2016)
https://doi.org/10.1016/j.amc.2016.01.021

Numerical Simulations of Kinetic Models for Chemotaxis

Francis Filbet and Chang Yang
SIAM Journal on Scientific Computing 36 (3) B348 (2014)
https://doi.org/10.1137/130910208

Nonnegativity of exact and numerical solutions of some chemotactic models

Patrick De Leenheer, Jay Gopalakrishnan and Erica Zuhr
Computers & Mathematics with Applications 66 (3) 356 (2013)
https://doi.org/10.1016/j.camwa.2013.05.014

Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis

Norikazu Saito
Communications on Pure & Applied Analysis 11 (1) 339 (2012)
https://doi.org/10.3934/cpaa.2012.11.339

Computational Modeling of Microabscess Formation

Alexandre Bittencourt Pigozzo, Gilson Costa Macedo, Rodrigo Weber dos Santos and Marcelo Lobosco
Computational and Mathematical Methods in Medicine 2012 1 (2012)
https://doi.org/10.1155/2012/736394

Modeling spatial adaptation of populations by a time non-local convection cross-diffusion evolution problem

Gonzalo Galiano
Applied Mathematics and Computation 218 (8) 4587 (2011)
https://doi.org/10.1016/j.amc.2011.10.041

Euro-Par 2010 Parallel Processing Workshops

Alexandre Bittencourt Pigozzo, Marcelo Lobosco and Rodrigo Weber dos Santos
Lecture Notes in Computer Science, Euro-Par 2010 Parallel Processing Workshops 6586 217 (2011)
https://doi.org/10.1007/978-3-642-21878-1_27

Competing through altering the environment: A cross-diffusion population model coupled to transport–Darcy flow equations

Gonzalo Galiano and Julián Velasco
Nonlinear Analysis: Real World Applications 12 (5) 2826 (2011)
https://doi.org/10.1016/j.nonrwa.2011.04.009

Artificial Immune Systems

Alexandre Bittencourt Pigozzo, Gilson Costa Macedo, Rodrigo Weber dos Santos and Marcelo Lobosco
Lecture Notes in Computer Science, Artificial Immune Systems 6825 95 (2011)
https://doi.org/10.1007/978-3-642-22371-6_11

Convergence of a Stochastic Particle Approximation for Measure Solutions of the 2D Keller-Segel System

Jan Haškovec and Christian Schmeiser
Communications in Partial Differential Equations 36 (6) 940 (2011)
https://doi.org/10.1080/03605302.2010.538783

Models of Self-Organizing Bacterial Communities and Comparisons with Experimental Observations

A. Marrocco, H. Henry, I. B. Holland, et al.
Mathematical Modelling of Natural Phenomena 5 (1) 148 (2010)
https://doi.org/10.1051/mmnp/20105107

Conservative cross diffusions and pattern formation through relaxation

Mostafa Bendahmane, Thomas Lepoutre, Americo Marrocco and Benoît Perthame
Journal de Mathématiques Pures et Appliquées 92 (6) 651 (2009)
https://doi.org/10.1016/j.matpur.2009.05.003

New Interior Penalty Discontinuous Galerkin Methods for the Keller�Segel Chemotaxis Model

Yekaterina Epshteyn and Alexander Kurganov
SIAM Journal on Numerical Analysis 47 (1) 386 (2009)
https://doi.org/10.1137/07070423X

Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System

Jan Haškovec and Christian Schmeiser
Journal of Statistical Physics 135 (1) 133 (2009)
https://doi.org/10.1007/s10955-009-9717-1

Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model

Yekaterina Epshteyn and Ahmet Izmirlioglu
Journal of Scientific Computing 40 (1-3) 211 (2009)
https://doi.org/10.1007/s10915-009-9281-5

Infinite time aggregation for the critical Patlak‐Keller‐Segel model in ℝ2

Adrien Blanchet, José A. Carrillo and Nader Masmoudi
Communications on Pure and Applied Mathematics 61 (10) 1449 (2008)
https://doi.org/10.1002/cpa.20225

A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models

Alina Chertock and Alexander Kurganov
Numerische Mathematik 111 (2) 169 (2008)
https://doi.org/10.1007/s00211-008-0188-0

THE SET OF CONCENTRATION FOR SOME HYPERBOLIC MODELS OF CHEMOTAXIS

LOBNA DERBEL and PIERRE EMMANUEL JABIN
Journal of Hyperbolic Differential Equations 04 (02) 331 (2007)
https://doi.org/10.1142/S021989160700115X

Infinite time aggregation for the critical Patlak-Keller-Segel model in ℝ2

Adrien Blanchet, José A. Carrillo and Nader Masmoudi
Communications on Pure and Applied Mathematics (2007)
https://doi.org/10.1002/cpa.20229

Derivation of hyperbolic models for chemosensitive movement

Francis Filbet, Philippe Lauren�ot and Beno�t Perthame
Journal of Mathematical Biology 50 (2) 189 (2005)
https://doi.org/10.1007/s00285-004-0286-2