Free Access
Volume 37, Number 4, July-August 2003
Special issue on Biological and Biomedical Applications
Page(s) 617 - 630
Published online 15 November 2003
  1. M.D. Betterton and M.P. Brenner, Collapsing bacterial cylinders. Phys. Rev. E 64 (2001) 061904. [CrossRef]
  2. M.P. Brenner, L.S. Levitov and E.O. Budrene, Physical mechanisms for chemotactic pattern formation bybacteria. Biophys. J. 74 (1998) 1677-1693. [CrossRef] [PubMed]
  3. M.P. Brenner, P. Constantin, L.P. Kadanof, A. Schenkel and S.C. Venhataramani, Diffusion, attraction and collapse. Nonlinearity 12 (1999) 1071-1098. [CrossRef] [MathSciNet]
  4. L. Corrias, B. Perthame and H. Zaag, A model motivated by angiogenesis. C. Rendus Acad. Sc. Paris, to appear.
  5. A El Boukili and A. Marrocco, Arclength continuation methods and applications to 2d drift-diffusion semiconductor equations. Rapport de recherche 2546, INRIA (mai 1995).
  6. A. El Boukili, Analyse mathématique et simulation numérique bidimensionnelle des dispositifs semi-conducteurs à hétérojonctions par l'approche éléments finis mixtes. Ph.D. thesis, Univ. Pierre et Marie Curie, Paris (décembre 1995).
  7. R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics, Studies in Applied Mathematics. SIAM, Philadelphia (1989).
  8. M.A. Herrero and J.J.L. Velázquez, Chemotactic collapse for the keller-segel model. J. Math. Biol. 35 (1996) 177-194. [CrossRef] [MathSciNet] [PubMed]
  9. M.A. Herrero, E. Medina and J.J.L. Velázquez, Finite time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10 (1997) 1739-1754. [CrossRef] [MathSciNet]
  10. F. Hecht and A. Marrocco, Numerical simulation of heterojunction structures using mixed finite elements and operator splitting, in 10th International Conference on Computing Methods in Applied Sciences and Engineering, R. Glowinski Ed., Nova Science Publishers, Le Vésinet (February 1992) 271-286.
  11. F. Hecht and A. Marrocco, Mixed finite element simulation of heterojunction structures including a boundary layer model for the quasi-fermi levels. COMPEL 13 (1994) 757-770.
  12. W. Jäger and S. Luckhaus, On explosion of solution to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 239 (1992) 819-824.
  13. E.F. Keller and L.A. Segel, Model for chemotaxis. J. Theor. Biol. 30 (1971) 225-234. [CrossRef] [PubMed]
  14. A. Marrocco and Ph. Montarnal, Simulation des modèles energy-transport à l'aide des éléments finis mixtes. C.R. Acad. Sci. Paris I 323 (1996) 535-541.
  15. Ph. Montarnal, Modèles de transport d'énergie des semi-conducteurs, études asymptotiques et résolution par des éléments finis mixtes. Ph.D. thesis, Université Paris VI (octobre 1997).
  16. A. Marrocco, 2d simulation of chemotactic bacteria aggregation. Rapport de recherche 4667, INRIA (décembre 2002).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you