The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Daniel Kessler , Ricardo H. Nochetto , Alfred Schmidt
ESAIM: M2AN, 38 1 (2004) 129-142
Published online: 2004-02-15
This article has been cited by the following article(s):
82 articles
Adaptive approximations of inclusions in a semilinear elliptic problem related to cardiac electrophysiology
Bangti Jin, Fengru Wang and Yifeng Xu IMA Journal of Numerical Analysis (2025) https://doi.org/10.1093/imanum/draf041
Stability analysis and error estimation based on difference spectral approximation for Allen–Cahn equation in a circular domain
Zhenlan Pan, Jihui Zheng and Jing An Mathematical Methods in the Applied Sciences 48 (3) 3214 (2025) https://doi.org/10.1002/mma.10481
Linear numerical schemes for a Q-tensor system for nematic liquid crystals
Justin Swain and Giordano Tierra Computer Methods in Applied Mechanics and Engineering 430 117190 (2024) https://doi.org/10.1016/j.cma.2024.117190
Energetic spectral-element time marching methods for phase-field nonlinear gradient systems
Shiqin Liu and Haijun Yu Applied Numerical Mathematics 205 38 (2024) https://doi.org/10.1016/j.apnum.2024.06.021
A numerical study of interface dynamics in fluid materials
Hairch Youssef, Abderrahmane Elmelouky, Mohamed Louzazni, Fouad Belhora and Mohamed Monkade Matériaux & Techniques 112 (4) 401 (2024) https://doi.org/10.1051/mattech/2024018
A deep learning method for the dynamics of classic and conservative Allen-Cahn equations based on fully-discrete operators
Yuwei Geng, Yuankai Teng, Zhu Wang and Lili Ju Journal of Computational Physics 496 112589 (2024) https://doi.org/10.1016/j.jcp.2023.112589
Liang Wu, MEJDI AZAIEZ, Tomás Chacón Rebollo and Chuanju Xu (2024) https://doi.org/10.2139/ssrn.4874976
Analysis and approximations of an optimal control problem for the Allen–Cahn equation
Konstantinos Chrysafinos and Dimitra Plaka Numerische Mathematik 155 (1-2) 35 (2023) https://doi.org/10.1007/s00211-023-01374-8
Certified reduced order method for the parametrized Allen-Cahn equation
Liang Wu, Mejdi Azaïez, Tomás Chacón Rebollo and Chuanju Xu Computers & Mathematics with Applications 134 167 (2023) https://doi.org/10.1016/j.camwa.2023.01.006
Error estimates with low-order polynomial dependence for the fully-discrete finite element invariant energy quadratization scheme of the Allen–Cahn equation
Guo-Dong Zhang and Xiaofeng Yang Mathematical Models and Methods in Applied Sciences 33 (12) 2463 (2023) https://doi.org/10.1142/S0218202523500537
The adaptive SAV weak Galerkin finite element method for the Allen-Cahn equation
Ying Liu, Xiaoqin Shen, Zhen Guan and Yufeng Nie Computers & Mathematics with Applications 151 449 (2023) https://doi.org/10.1016/j.camwa.2023.10.023
Efficient and energy stable numerical schemes for the two-mode phase field crystal equation
Fan Zhang, Dongfang Li and Hai-Wei Sun Journal of Computational and Applied Mathematics 427 115148 (2023) https://doi.org/10.1016/j.cam.2023.115148
Numerical investigation into the dependence of the Allen–Cahn equation on the free energy
Yunho Kim and Dongsun Lee Advances in Computational Mathematics 48 (3) (2022) https://doi.org/10.1007/s10444-022-09955-1
Error estimates for fully discrete BDF finite element approximations of the Allen–Cahn equation
Georgios Akrivis and Buyang Li IMA Journal of Numerical Analysis 42 (1) 363 (2022) https://doi.org/10.1093/imanum/draa065
A stabilized fully-discrete scheme for phase field crystal equation
Fan Zhang, Dongfang Li, Hai-Wei Sun and Jia-Li Zhang Applied Numerical Mathematics 178 337 (2022) https://doi.org/10.1016/j.apnum.2022.04.007
Conditional A Posteriori Error Bounds for High Order Discontinuous Galerkin Time Stepping Approximations of Semilinear Heat Models with Blow-up
Stephen Metcalfe and Thomas P. Wihler SIAM Journal on Scientific Computing 44 (3) A1337 (2022) https://doi.org/10.1137/21M1418964
A new class of implicit–explicit BDFk SAV schemes for general dissipative systems and their error analysis
Fukeng Huang and Jie Shen Computer Methods in Applied Mechanics and Engineering 392 114718 (2022) https://doi.org/10.1016/j.cma.2022.114718
Efficient Fourier Spectral Approximation for Nonlinear Second-Order Problems with Variable Coefficients
婷婷 江 Advances in Applied Mathematics 11 (07) 4268 (2022) https://doi.org/10.12677/AAM.2022.117453
Multiscale model reduction for the Allen–Cahn problem in perforated domains
Aleksei Tyrylgin, Yaoyao Chen, Maria Vasilyeva and Eric T. Chung Journal of Computational and Applied Mathematics 381 113010 (2021) https://doi.org/10.1016/j.cam.2020.113010
Error Analysis of an Unconditionally Energy Stable Local Discontinuous Galerkin Scheme for the Cahn–Hilliard Equation with Concentration-Dependent Mobility
Fengna Yan and Yan Xu Computational Methods in Applied Mathematics 21 (3) 729 (2021) https://doi.org/10.1515/cmam-2020-0066
Some algorithms for the mean curvature flow under topological changes
Arthur Bousquet, Yukun Li and Guanqian Wang Computational and Applied Mathematics 40 (4) (2021) https://doi.org/10.1007/s40314-021-01494-7
Numerical analysis of a second-order IPDGFE method for the Allen–Cahn equation and the curvature-driven geometric flow
Huanrong Li, Zhengyuan Song and Junzhao Hu Computers & Mathematics with Applications 86 49 (2021) https://doi.org/10.1016/j.camwa.2021.01.014
Pointwise a Posteriori Error Bounds for Blow-Up in the Semilinear Heat Equation
Irene Kyza and Stephen Metcalfe SIAM Journal on Numerical Analysis 58 (5) 2609 (2020) https://doi.org/10.1137/19M1264758
Geometric Partial Differential Equations - Part I
Qiang Du and Xiaobing Feng Handbook of Numerical Analysis, Geometric Partial Differential Equations - Part I 21 425 (2020) https://doi.org/10.1016/bs.hna.2019.05.001
Unconditionally energy stable large time stepping method for the L2-gradient flow based ternary phase-field model with precise nonlocal volume conservation
Jun Zhang and Xiaofeng Yang Computer Methods in Applied Mechanics and Engineering 361 112743 (2020) https://doi.org/10.1016/j.cma.2019.112743
An energy stable linear diffusive Crank–Nicolson scheme for the Cahn–Hilliard gradient flow
Lin Wang and Haijun Yu Journal of Computational and Applied Mathematics 377 112880 (2020) https://doi.org/10.1016/j.cam.2020.112880
Optimal error estimates for the scalar auxiliary variable finite-element schemes for gradient flows
Hongtao Chen, Jingjing Mao and Jie Shen Numerische Mathematik 145 (1) 167 (2020) https://doi.org/10.1007/s00211-020-01112-4
Space–time discontinuous Galerkin methods for the ε-dependent stochastic Allen–Cahn equation with mild noise
Dimitra C Antonopoulou IMA Journal of Numerical Analysis 40 (3) 2076 (2020) https://doi.org/10.1093/imanum/drz019
A Posteriori Error Estimates for the Allen--Cahn Problem
Konstantinos Chrysafinos, Emmanuil H. Georgoulis and Dimitra Plaka SIAM Journal on Numerical Analysis 58 (5) 2662 (2020) https://doi.org/10.1137/19M1277540
Geometric Partial Differential Equations - Part I
Eberhard Bänsch and Alfred Schmidt Handbook of Numerical Analysis, Geometric Partial Differential Equations - Part I 21 555 (2020) https://doi.org/10.1016/bs.hna.2019.05.004
Structure Preserving Discretization of Allen–Cahn Type Problems Modeling the Motion of Phase Boundaries
Anke Böttcher and Herbert Egger Vietnam Journal of Mathematics 48 (4) 847 (2020) https://doi.org/10.1007/s10013-020-00428-w
Recovery type a posteriori error estimation of adaptive finite element method for Allen–Cahn equation
Yaoyao Chen, Yunqing Huang and Nianyu Yi Journal of Computational and Applied Mathematics 369 112574 (2020) https://doi.org/10.1016/j.cam.2019.112574
A SCR-based error estimation and adaptive finite element method for the Allen–Cahn equation
Yaoyao Chen, Yunqing Huang and Nianyu Yi Computers & Mathematics with Applications 78 (1) 204 (2019) https://doi.org/10.1016/j.camwa.2019.02.022
A review on computational modelling of phase-transition problems
Hector Gomez, Miguel Bures and Adrian Moure Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377 (2143) 20180203 (2019) https://doi.org/10.1098/rsta.2018.0203
Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2
Jie Shen Handbook of Numerical Analysis, Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2 20 647 (2019) https://doi.org/10.1016/bs.hna.2019.06.004
A linearly second-order energy stable scheme for the phase field crystal model
Shuaichao Pei, Yanren Hou and Bo You Applied Numerical Mathematics 140 134 (2019) https://doi.org/10.1016/j.apnum.2019.01.017
Stability analysis and best approximation error estimates of discontinuous time-stepping schemes for the Allen–Cahn equation
Konstantinos Chrysafinos ESAIM: Mathematical Modelling and Numerical Analysis 53 (2) 551 (2019) https://doi.org/10.1051/m2an/2018071
hp-Adaptive Galerkin Time Stepping Methods for Nonlinear Initial Value Problems
Irene Kyza, Stephen Metcalfe and Thomas P. Wihler Journal of Scientific Computing 75 (1) 111 (2018) https://doi.org/10.1007/s10915-017-0565-x
On Efficient Second Order Stabilized Semi-implicit Schemes for the Cahn–Hilliard Phase-Field Equation
Lin Wang and Haijun Yu Journal of Scientific Computing 77 (2) 1185 (2018) https://doi.org/10.1007/s10915-018-0746-2
Convergence and Error Analysis for the Scalar Auxiliary Variable (SAV) Schemes to Gradient Flows
Jie Shen and Jie Xu SIAM Journal on Numerical Analysis 56 (5) 2895 (2018) https://doi.org/10.1137/17M1159968
An adaptive variational procedure for the conservative and positivity preserving Allen–Cahn phase-field model
Vaibhav Joshi and Rajeev K. Jaiman Journal of Computational Physics 366 478 (2018) https://doi.org/10.1016/j.jcp.2018.04.022
A Posteriori Error Estimation and Adaptivity for Nonlinear Parabolic Equations using IMEX-Galerkin Discretization of Primal and Dual Equations
X. Wu, K. G. van der Zee, G. Simsek and E. H. van Brummelen SIAM Journal on Scientific Computing 40 (5) A3371 (2018) https://doi.org/10.1137/17M1133968
ANALYSIS OF STABILITY AND ERROR ESTIMATES FOR THREE METHODS APPROXIMATING A NONLINEAR REACTION-DIFFUSION EQUATION
Journal of Applied Analysis & Computation 7 (1) 1 (2017) https://doi.org/10.11948/2017001
Error estimates for time discretizations of Cahn–Hilliard and Allen–Cahn phase-field models for two-phase incompressible flows
Yongyong Cai, Heejun Choi and Jie Shen Numerische Mathematik 137 (2) 417 (2017) https://doi.org/10.1007/s00211-017-0875-9
Hector Gomez and Kristoffer G. van der Zee 1 (2017) https://doi.org/10.1002/9781119176817.ecm2118
Numerical Approximations for Allen-Cahn Type Phase Field Model of Two-Phase Incompressible Fluids with Moving Contact Lines
Lina Ma, Rui Chen, Xiaofeng Yang and Hui Zhang Communications in Computational Physics 21 (3) 867 (2017) https://doi.org/10.4208/cicp.OA-2016-0008
Energy Stable Numerical Schemes for a Hydrodynamic Model of Nematic Liquid Crystals
Jia Zhao, Xiaofeng Yang, Jun Li and Qi Wang SIAM Journal on Scientific Computing 38 (5) A3264 (2016) https://doi.org/10.1137/15M1024093
A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids
Jia Zhao, Xiaofeng Yang, Jie Shen and Qi Wang Journal of Computational Physics 305 539 (2016) https://doi.org/10.1016/j.jcp.2015.09.044
Adaptivity and Blow-Up Detection for Nonlinear Evolution Problems
Andrea Cangiani, Emmanuil H. Georgoulis, Irene Kyza and Stephen Metcalfe SIAM Journal on Scientific Computing 38 (6) A3833 (2016) https://doi.org/10.1137/16M106073X
Numerical approximations to a new phase field model for two phase flows of complex fluids
Jia Zhao, Qi Wang and Xiaofeng Yang Computer Methods in Applied Mechanics and Engineering 310 77 (2016) https://doi.org/10.1016/j.cma.2016.06.008
A diffuse interface model for two-phase ferrofluid flows
Ricardo H. Nochetto, Abner J. Salgado and Ignacio Tomas Computer Methods in Applied Mechanics and Engineering 309 497 (2016) https://doi.org/10.1016/j.cma.2016.06.011
Decoupled, Energy Stable Schemes for Phase-Field Models of Two-Phase Incompressible Flows
Jie Shen and Xiaofeng Yang SIAM Journal on Numerical Analysis 53 (1) 279 (2015) https://doi.org/10.1137/140971154
Stabilized semi‐implicit spectral deferred correction methods for Allen–Cahn and Cahn–Hilliard equations
Fei Liu and Jie Shen Mathematical Methods in the Applied Sciences 38 (18) 4564 (2015) https://doi.org/10.1002/mma.2869
Fast Explicit Integration Factor Methods for Semilinear Parabolic Equations
Lili Ju, Jian Zhang, Liyong Zhu and Qiang Du Journal of Scientific Computing 62 (2) 431 (2015) https://doi.org/10.1007/s10915-014-9862-9
A second order operator splitting method for Allen–Cahn type equations with nonlinear source terms
Hyun Geun Lee and June-Yub Lee Physica A: Statistical Mechanics and its Applications 432 24 (2015) https://doi.org/10.1016/j.physa.2015.03.012
Efficient energy stable numerical schemes for a phase field moving contact line model
Jie Shen, Xiaofeng Yang and Haijun Yu Journal of Computational Physics 284 617 (2015) https://doi.org/10.1016/j.jcp.2014.12.046
Robustness of error estimates for phase field models at a class of topological changes
Sören Bartels Computer Methods in Applied Mechanics and Engineering 288 75 (2015) https://doi.org/10.1016/j.cma.2014.11.005
Numerical Methods for Nonlinear Partial Differential Equations
Sören Bartels Springer Series in Computational Mathematics, Numerical Methods for Nonlinear Partial Differential Equations 47 153 (2015) https://doi.org/10.1007/978-3-319-13797-1_6
Interior Penalty Discontinuous Galerkin Based Isogeometric Analysis for Allen-Cahn Equations on Surfaces
Futao Zhang, Yan Xu, Falai Chen and Ruihan Guo Communications in Computational Physics 18 (5) 1380 (2015) https://doi.org/10.4208/cicp.010914.180315a
Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow
Xiaobing Feng and Yukun Li IMA Journal of Numerical Analysis 35 (4) 1622 (2015) https://doi.org/10.1093/imanum/dru058
Duality-based two-level error estimation for time-dependent PDEs: Application to linear and nonlinear parabolic equations
G. Şimşek, X. Wu, K.G. van der Zee and E.H. van Brummelen Computer Methods in Applied Mechanics and Engineering 288 83 (2015) https://doi.org/10.1016/j.cma.2014.11.019
On a posteriori error control for the Allen–Cahn problem
Emmanuil H. Georgoulis and Charalambos Makridakis Mathematical Methods in the Applied Sciences 37 (2) 173 (2014) https://doi.org/10.1002/mma.2894
Decoupled Energy Stable Schemes for Phase-Field Models of Two-Phase Complex Fluids
Jie Shen and Xiaofeng Yang SIAM Journal on Scientific Computing 36 (1) B122 (2014) https://doi.org/10.1137/130921593
Discontinuous Galerkin Methods for Mass Transfer through Semipermeable Membranes
Andrea Cangiani, Emmanuil H. Georgoulis and Max Jensen SIAM Journal on Numerical Analysis 51 (5) 2911 (2013) https://doi.org/10.1137/120890429
An adaptive time stepping method with efficient error control for second-order evolution problems
JianGuo Huang, JunJiang Lai and Tao Tang Science China Mathematics 56 (12) 2753 (2013) https://doi.org/10.1007/s11425-013-4730-x
A three level linearized compact difference scheme for the Cahn-Hilliard equation
Juan Li, ZhiZhong Sun and Xuan Zhao Science China Mathematics 55 (4) 805 (2012) https://doi.org/10.1007/s11425-011-4290-x
Preconditioning for Allen–Cahn variational inequalities with non-local constraints
Luise Blank, Lavinia Sarbu and Martin Stoll Journal of Computational Physics 231 (16) 5406 (2012) https://doi.org/10.1016/j.jcp.2012.04.035
Goal‐oriented error estimation for Cahn–Hilliard models of binary phase transition
Kristoffer G. van der Zee, J. Tinsley Oden, Serge Prudhomme and Andrea Hawkins‐Daarud Numerical Methods for Partial Differential Equations 27 (1) 160 (2011) https://doi.org/10.1002/num.20638
Analysis for Time Discrete Approximations of Blow-up Solutions of Semilinear Parabolic Equations
Irene Kyza and Charalambos Makridakis SIAM Journal on Numerical Analysis 49 (1) 405 (2011) https://doi.org/10.1137/100796819
Error control for the approximation of Allen–Cahn and Cahn–Hilliard equations with a logarithmic potential
Sören Bartels and Rüdiger Müller Numerische Mathematik 119 (3) 409 (2011) https://doi.org/10.1007/s00211-011-0389-9
Robust A Priori and A Posteriori Error Analysis for the Approximation of Allen–Cahn and Ginzburg–Landau Equations Past Topological Changes
Sören Bartels, Rüdiger Müller and Christoph Ortner SIAM Journal on Numerical Analysis 49 (1) 110 (2011) https://doi.org/10.1137/090751530
Numerical Mathematics and Advanced Applications 2009
Carsten Gräser, Ralf Kornhuber and Uli Sack Numerical Mathematics and Advanced Applications 2009 397 (2010) https://doi.org/10.1007/978-3-642-11795-4_42
Numerical analysis for phase field simulations of moving interfaces with topological changes
Sören Bartels and Rüdiger Müller PAMM 10 (1) 565 (2010) https://doi.org/10.1002/pamm.201010275
Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows
Jie Shen and Xiaofeng Yang Chinese Annals of Mathematics, Series B 31 (5) 743 (2010) https://doi.org/10.1007/s11401-010-0599-y
Numerical Studies of Discrete Approximations to the Allen–Cahn Equation in the Sharp Interface Limit
Jian Zhang and Qiang Du SIAM Journal on Scientific Computing 31 (4) 3042 (2009) https://doi.org/10.1137/080738398
Robust Error Estimates for Adaptive Phase Field Simulations
Sören Bartels and Rüdiger Müller PAMM 8 (1) 10983 (2008) https://doi.org/10.1002/pamm.200810983
Error Estimates for a Finite Element Discretization of a Two‐Scale Phase Field Model
Christof Eck Multiscale Modeling & Simulation 6 (1) 1 (2007) https://doi.org/10.1137/060656942
Robust a‐posteriori error control of Cahn‐Hilliard type equations with elasticity
Sören Bartels and Rüdiger Müller PAMM 7 (1) 1023305 (2007) https://doi.org/10.1002/pamm.200700915
Robust Multigrid Methods for Vector-valued Allen–Cahn Equations with Logarithmic Free Energy
Ralf Kornhuber and Rolf Krause Computing and Visualization in Science 9 (2) 103 (2006) https://doi.org/10.1007/s00791-006-0020-2
Robusta priorierror analysis for the approximation of degree-one Ginzburg-Landau vortices
Sören Bartels ESAIM: Mathematical Modelling and Numerical Analysis 39 (5) 863 (2005) https://doi.org/10.1051/m2an:2005038
A posteriori error analysis for time-dependent Ginzburg-Landau type equations
S�ren Bartels Numerische Mathematik 99 (4) 557 (2005) https://doi.org/10.1007/s00211-004-0560-7
A Posteriori Error Estimates and an Adaptive Finite Element Method for the Allen–Cahn Equation and the Mean Curvature Flow
Xiaobing Feng and Hai-jun Wu Journal of Scientific Computing 24 (2) 121 (2005) https://doi.org/10.1007/s10915-004-4610-1