Free Access
Volume 38, Number 1, January-February 2004
Page(s) 129 - 142
Published online 15 February 2004
  1. S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1085–1095. [CrossRef] [Google Scholar]
  2. H. Brézis, Analyse fonctionnelle. Dunod, Paris (1999). [Google Scholar]
  3. G. Caginalp and X. Chen, Convergence of the phase-field model to its sharp interface limits. Euro. J. Appl. Math. 9 (1998) 417–445. [Google Scholar]
  4. X. Chen, Spectrum for the Allen–Cahn, Cahn–Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differantial Equations 19 (1994) 1371–1395. [Google Scholar]
  5. Ph. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér 9 (1975) 77–84. [Google Scholar]
  6. R. Dautrey and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Masson (1988). [Google Scholar]
  7. P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533–1589. [CrossRef] [MathSciNet] [Google Scholar]
  8. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems iv: Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749. [CrossRef] [MathSciNet] [Google Scholar]
  9. X. Feng and A. Prohl, Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Num. Math. 94 (2003) 33–65. [Google Scholar]
  10. Ch. Makridakis and R.H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41 (2003) 1585–1594. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Rappaz and J.-F. Scheid, Existence of solutions to a phase-field model for the solidification process of a binary alloy. Math. Methods Appl. Sci. 23 (2000) 491–513. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Schmidt and K. Siebert, ALBERT: An adaptive hierarchical finite element toolbox. Preprint 06/2000, Freiburg edition. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you