Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

Aq-adaptive partition of unity finite element method for the solution of the 2-D Helmholtz equation

M S Mohamed, O Laghrouche and J Trevelyan
IOP Conference Series: Materials Science and Engineering 10 012148 (2010)
DOI: 10.1088/1757-899X/10/1/012148
See this article

The Ultra Weak Variational Formulation Using Bessel Basis Functions

Teemu Luostari, Tomi Huttunen and Peter Monk
Communications in Computational Physics 11 (2) 400 (2012)
DOI: 10.4208/cicp.121209.040111s
See this article

Numerical microlocal analysis of harmonic wavefields

Jean-David Benamou, Francis Collino and Olof Runborg
Journal of Computational Physics 199 (2) 717 (2004)
DOI: 10.1016/j.jcp.2004.03.014
See this article

Error estimates in the Fast Multipole Method for scattering problems Part 2: Truncation of the Gegenbauer series

Quentin Carayol and Francis Collino
ESAIM: Mathematical Modelling and Numerical Analysis 39 (1) 183 (2005)
DOI: 10.1051/m2an:2005008
See this article

On the numerical approximation of high-frequency acoustic multiple scattering problems by circular cylinders

Xavier Antoine, Chokri Chniti and Karim Ramdani
Journal of Computational Physics 227 (3) 1754 (2008)
DOI: 10.1016/j.jcp.2007.09.030
See this article

Solving Maxwell’s equations using the ultra weak variational formulation

T. Huttunen, M. Malinen and P. Monk
Journal of Computational Physics 223 (2) 731 (2007)
DOI: 10.1016/j.jcp.2006.10.016
See this article

A FAST NUMERICAL APPROXIMATION OF AN ACOUSTIC MULTIPLE SCATTERING PROBLEM BY CIRCULAR OBSTACLES

MANEL LAYOUNI
Journal of Computational Acoustics 1350010 (2013)
DOI: 10.1142/S0218396X13500100
See this article

Plane wave decomposition in the unit disc: Convergence estimates and computational aspects

E. Perrey-Debain
Journal of Computational and Applied Mathematics 193 (1) 140 (2006)
DOI: 10.1016/j.cam.2005.05.027
See this article

Source point discovery through high frequency asymptotic time reversal

Jean-David Benamou, Francis Collino and Simon Marmorat
Journal of Computational Physics 231 (14) 4643 (2012)
DOI: 10.1016/j.jcp.2012.03.012
See this article

A theoretical and numerical resolution of an acoustic multiple scattering problem in three-dimensional case

Manel L. Amamou
Acoustical Physics 62 (3) 280 (2016)
DOI: 10.1134/S1063771016030015
See this article

Fast regularized linear sampling for inverse scattering problems

M'Barek Fares, Serge Gratton and Philippe L. Toint
Numerical Linear Algebra with Applications 18 (1) 55 (2011)
DOI: 10.1002/nla.698
See this article

A comparison of wave-based discontinuous Galerkin, ultra-weak and least-square methods for wave problems

G. Gabard, P. Gamallo and T. Huttunen
International Journal for Numerical Methods in Engineering 85 (3) 380 (2011)
DOI: 10.1002/nme.2979
See this article

A wideband Fast Multipole Method for the Helmholtz kernel: Theoretical developments

Stéphanie Chaillat and Francis Collino
Computers & Mathematics with Applications 70 (4) 660 (2015)
DOI: 10.1016/j.camwa.2015.05.019
See this article

Fourier-Based Fast Multipole Method for the Helmholtz Equation

Cris Cecka and Eric Darve
SIAM Journal on Scientific Computing 35 (1) A79 (2013)
DOI: 10.1137/11085774X
See this article

A comparison of two Trefftz-type methods: the ultraweak variational formulation and the least-squares method, for solving shortwave 2-D Helmholtz problems

P. Gamallo and R. J. Astley
International Journal for Numerical Methods in Engineering 71 (4) 406 (2007)
DOI: 10.1002/nme.1948
See this article

Comparison of two wave element methods for the Helmholtz problem

T. Huttunen, P. Gamallo and R. J. Astley
Communications in Numerical Methods in Engineering 25 (1) 35 (2009)
DOI: 10.1002/cnm.1102
See this article