The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Richard S. Falk
ESAIM: M2AN, 42 3 (2008) 411-424
Published online: 2008-04-03
This article has been cited by the following article(s):
16 articles
Convergence of the Incremental Projection Method Using Conforming Approximations
Robert Eymard and David Maltese Computational Methods in Applied Mathematics 24 (3) 623 (2024) https://doi.org/10.1515/cmam-2023-0038
Analysis of fully discrete mixed finite element scheme for stochastic Navier–Stokes equations with multiplicative noise
Hailong Qiu Stochastics and Partial Differential Equations: Analysis and Computations 12 (1) 576 (2024) https://doi.org/10.1007/s40072-023-00290-0
Fortin operator for the Taylor–Hood element
L. Diening, J. Storn and T. Tscherpel Numerische Mathematik 150 (2) 671 (2022) https://doi.org/10.1007/s00211-021-01260-1
Taylor--Hood Discretization of the Reissner--Mindlin Plate
Dietmar Gallistl and Mira Schedensack SIAM Journal on Numerical Analysis 59 (3) 1195 (2021) https://doi.org/10.1137/20M1343397
Optimally convergent mixed finite element methods for the stochastic Stokes equations
Xiaobing Feng, Andreas Prohl and Liet Vo IMA Journal of Numerical Analysis 41 (3) 2280 (2021) https://doi.org/10.1093/imanum/drab006
Analysis of Fully Discrete Mixed Finite Element Methods for Time-dependent Stochastic Stokes Equations with Multiplicative Noise
Xiaobing Feng and Hailong Qiu Journal of Scientific Computing 88 (2) (2021) https://doi.org/10.1007/s10915-021-01546-4
Staggered Taylor–Hood and Fortin elements for Stokes equations of pressure boundary conditions in Lipschitz domain
Zhijie Du, Huoyuan Duan and Wei Liu Numerical Methods for Partial Differential Equations 36 (1) 185 (2020) https://doi.org/10.1002/num.22425
The inf-sup stability of the lowest order Taylor–Hood pair on affine anisotropic meshes
Gabriel R Barrenechea and Andreas Wachtel IMA Journal of Numerical Analysis 40 (4) 2377 (2020) https://doi.org/10.1093/imanum/drz028
A Mixed $H^1$-Conforming Finite Element Method for Solving Maxwell's Equations with Non-$H^1$ Solution
Huo-Yuan Duan, Roger C. E. Tan, Suh-Yuh Yang and Cheng-Shu You SIAM Journal on Scientific Computing 40 (1) A224 (2018) https://doi.org/10.1137/16M1078082
C
$$_{0}$$
0
P
$$_{2}$$
2
–P
$$_{0}$$
0
Stokes finite element pair on sub-hexahedron tetrahedral grids
Shangyou Zhang and Shuo Zhang Calcolo 54 (4) 1403 (2017) https://doi.org/10.1007/s10092-017-0235-2
Superconvergence analysis of the MAC scheme for the two dimensional stokes problem
Yanping Lin and Qingsong Zou Numerical Methods for Partial Differential Equations 32 (6) 1647 (2016) https://doi.org/10.1002/num.22066
A simple construction of a Fortin operator for the two dimensional Taylor–Hood element
Long Chen Computers & Mathematics with Applications 68 (10) 1368 (2014) https://doi.org/10.1016/j.camwa.2014.09.003
A uniformly stable Fortin operator for the Taylor–Hood element
Kent-Andre Mardal, Joachim Schöberl and Ragnar Winther Numerische Mathematik 123 (3) 537 (2013) https://doi.org/10.1007/s00211-012-0492-6
W1,q stability of the Fortin operator for the MAC scheme
T. Gallouët, R. Herbin and J.-C. Latché Calcolo 49 (1) 63 (2012) https://doi.org/10.1007/s10092-011-0045-x
Computations with finite element methods for the Brinkman problem
Antti Hannukainen, Mika Juntunen and Rolf Stenberg Computational Geosciences 15 (1) 155 (2011) https://doi.org/10.1007/s10596-010-9204-4
Numerical Mathematics and Advanced Applications 2009
Antti Hannukainen, Mika Juntunen and Rolf Stenberg Numerical Mathematics and Advanced Applications 2009 425 (2010) https://doi.org/10.1007/978-3-642-11795-4_45