Free Access
Volume 42, Number 3, May-June 2008
Page(s) 411 - 424
Published online 03 April 2008
  1. M. Bercovier and O. Pironneau, Error estimates for finite element solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979) 211–224. [CrossRef] [MathSciNet]
  2. D. Boffi, Stability of higher-order triangular Hood-Taylor methods for the stationary Stokes equation. Math. Models Methods Appl. Sci. 4 (1994) 223–235. [CrossRef] [MathSciNet]
  3. D. Boffi, Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34 (1997) 664–670. [CrossRef] [MathSciNet]
  4. F. Brezzi and R.S. Falk, Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal. 28 (1991) 581–590. [CrossRef] [MathSciNet]
  5. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991).
  6. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations: theory and algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986).
  7. L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19 (1985) 111–143. [MathSciNet]
  8. R. Stenberg, Error analysis of some finite element methods for the Stokes problem. Math. Comp. 54 (1990) 494–548.
  9. R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér. 18 (1984) 175–182. [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you