Free access
Issue
ESAIM: M2AN
Volume 45, Number 4, July-August 2011
Page(s) 603 - 626
DOI http://dx.doi.org/10.1051/m2an/2010071
Published online 10 December 2010
  1. D.N. Arnold, Discretization by finite elements of a model parameter dependent problem. Numer. Math. 37 (1981) 405–421. [CrossRef] [MathSciNet]
  2. I. Babuška and J. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis II, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991) 641–787.
  3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991).
  4. M. Dauge and M. Suri, Numerical approximation of the spectra of non-compact operators arising in buckling problems. J. Numer. Math. 10 (2002) 193–219. [CrossRef] [MathSciNet]
  5. J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 1: The problem of convergence. RAIRO Anal. Numér. 12 (1978) 97–112. [MathSciNet]
  6. J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 2: Error estimates for the Galerkin method. RAIRO Anal. Numér. 12 (1978) 113–119. [MathSciNet]
  7. R.S. Falk, Finite Elements for the Reissner-Mindlin Plate, in Mixed Finite Elements, Compatibility Conditions, and Applications, D. Boffi and L. Gastaldi Eds., Springer-Verlag, Berlin (2008) 195–230.
  8. E. Hernández, E. Otárola, R. Rodríguez and F. Sanhueza, Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry. IMA J. Numer. Anal. 29 (2009) 180–207. [CrossRef] [MathSciNet]
  9. T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1966).
  10. C. Lovadina, D. Mora and R. Rodríguez, Approximation of the buckling problem for Reissner-Mindlin plates. SIAM J. Numer. Anal. 48 (2010) 603–632. [CrossRef] [MathSciNet]
  11. J.N. Reddy, An Introduction to the Finite Element Method. McGraw-Hill, New York (1993).
  12. B. Szabó and G. Királyfalvi, Linear models of buckling and stress-stiffening. Comput. Methods Appl. Mech. Eng. 171 (1999) 43–59. [CrossRef]

Recommended for you