Issue |
ESAIM: M2AN
Volume 48, Number 3, May-June 2014
|
|
---|---|---|
Page(s) | 815 - 858 | |
DOI | https://doi.org/10.1051/m2an/2013122 | |
Published online | 08 April 2014 |
Multiscale Finite Element approach for “weakly” random problems and related issues
1 CERMICS, École Nationale des Ponts et Chaussées, Université
Paris-Est, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France.
lebris@cermics.enpc.fr
2 INRIA Rocquencourt, MICMAC team-project, Domaine de Voluceau,
B.P. 105, 78153 Le Chesnay Cedex, France.
3 Laboratoire Navier, École Nationale des Ponts et Chaussées,
Université Paris-Est, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France.
legoll@lami.enpc.fr; thominef@lami.enpc.fr
Received:
7
November
2011
We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale Finite Element Method. Using numerical experiments, we demonstrate the efficiency of our approach and the computational speed-up with respect to a more standard approach. In the stationary setting, we provide a complete analysis of the approach, extending that available for the deterministic periodic setting.
Mathematics Subject Classification: 35B27 / 65M60 / 65M12 / 35R60 / 60H
Key words: Weakly stochastic homogenization / finite elements / Galerkin methods / highly oscillatory PDE
© EDP Sciences, SMAI 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.