Issue |
ESAIM: M2AN
Volume 33, Number 1, January Fabruary 1999
|
|
---|---|---|
Page(s) | 23 - 54 | |
DOI | https://doi.org/10.1051/m2an:1999103 | |
Published online | 15 August 2002 |
Minimax optimal control problems. Numerical analysis of the finite horizon case
CONICET – Inst. Beppo Levi, Dpto. Matemática, FCEIA, Universidad Nacional
de Rosario, Rosario, Argentine.
Received:
19
November
1996
Revised:
16
June
1998
In this paper we consider the numerical computation of the optimal cost function associated to the problem that consists in finding the minimum of the maximum of a scalar functional on a trajectory. We present an approximation method for the numerical solution which employs both discretization on time and on spatial variables. In this way, we obtain a fully discrete problem that has unique solution. We give an optimal estimate for the error between the approximated solution and the optimal cost function of the original problem. Also, numerical examples are presented.
Résumé
Nous étudions ici la solution numérique d'une inéquation quasi-variationnelle associée à la minimisation du maximum d'une fonctionnelle définie sur la trajectoire d'un système dynamique gouverné par une équation différentielle ordinaire. Nous faisons la présentation d'une méthode d'approxi mation en employant des discrétisations en espace et en temps. Nous obtenons des estimations optimales pour la vélocité de convergence des solutions approchées vers la fonction de coût optimal du problème originel.
Mathematics Subject Classification: Primary: 49D25 / 49A40 / Secondary: 49C05 / 49C20
Key words: minimax problems / optimal cost function / discrete maximum principle / fully discrete solution.
© EDP Sciences, SMAI, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.