Issue |
ESAIM: M2AN
Volume 33, Number 2, March April 1999
|
|
---|---|---|
Page(s) | 407 - 438 | |
DOI | https://doi.org/10.1051/m2an:1999123 | |
Published online | 15 August 2002 |
Boundary observability for the space semi-discretizations of the 1 – d wave equation
Universidad Complutense, Matematica Aplicada,
28040 Madrid, Spain.
Received:
7
March
1998
Revised:
10
July
1998
We consider space semi-discretizations of the 1-d wave equation in a bounded interval with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary observability, i.e., the problem of whether the total energy of solutions can be estimated uniformly in terms of the energy concentrated on the boundary as the net-spacing h → 0. We prove that, due to the spurious modes that the numerical scheme introduces at high frequencies, there is no such a uniform bound. We prove however a uniform bound in a subspace of solutions generated by the low frequencies of the discrete system. When h → 0 this finite-dimensional spaces increase and eventually cover the whole space. We thus recover the well-known observability property of the continuous system as the limit of discrete observability estimates as the mesh size tends to zero. We consider both finite-difference and finite-element semi-discretizations.
Résumé
On considère l'approximation par différences finies et éléments finis en espace de l'équation des ondes 1-d avec des conditions aux limites de Dirichlet homogènes. On étudie le problème de l'observabilité frontière, i.e., la possibilité d'estimer l'énergie totale des solutions par l'énergie concentrée sur un extrême du bord, uniformement lorsque h, le pas de la discrétisation, tend vers zéro. On démontre que cette estimation uniforme n'a pas lieu à cause d'un comportement singulier des fonctions propres à hautes fréquences. Néanmoins, on démontre une estimation uniforme dans des sous-espaces convenables de solutions qui, lorsque h → 0, finissent par couvrir l'espace d'énergie tout entier. On retrouve donc la propriété d'observabilité, bien connue pour le système continu, comme la limite des estimations discrètes lorsque le pas en espace tend vers zéro.
Mathematics Subject Classification: 35L05 / 65M06 / 65M60 / 93B07
Key words: Wave equation / semi-discretization / observability.
© EDP Sciences, SMAI, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.