Issue |
ESAIM: M2AN
Volume 35, Number 3, May-June 2001
|
|
---|---|---|
Page(s) | 575 - 593 | |
DOI | https://doi.org/10.1051/m2an:2001127 | |
Published online | 15 April 2002 |
Obstacle problems for scalar conservation laws
University of Pau, CNRS, Laboratory of Applied Mathematics ERS 2055, I.P.R.A., Avenue de l'Université, 64000 Pau, France. (laurent.levi@univ-pau.fr)
Received:
March
2000
Revised:
7
February
2001
In this paper we are interested in bilateral obstacle problems for quasilinear scalar conservation laws associated with Dirichlet boundary conditions. Firstly, we provide a suitable entropy formulation which ensures uniqueness. Then, we justify the existence of a solution through the method of penalization and by referring to the notion of entropy process solution due to specific properties of bounded sequences in L∞. Lastly, we study the behaviour of this solution and its stability properties with respect to the associated obstacle functions.
Résumé
Ce travail a pour objet l'étude de problèmes d'obstacles bilatéraux pour des lois de conservation scalaires quasi-linénaires du premier ordre associées à des conditions aux limites de Dirichlet. On donne d'abord une formulation entropique qui garantit l'unicité. On justifie alors l'existence d'une solution par utilisation de la méthode de pénalisation et au moyen de la notion de processus entropique solution due aux propriétés des suites bornées dans L∞. Enfin, on étudie le comportement de cette solution et ses propriétés de stabilité en fonction des contraintes d'obstacle associées.
Mathematics Subject Classification: 35L65 / 35R35 / 35L85
Key words: Obstacle problem / conservation laws / entropy solution.
© EDP Sciences, SMAI, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.