Issue |
ESAIM: M2AN
Volume 34, Number 4, July/August 2000
|
|
---|---|---|
Page(s) | 775 - 797 | |
DOI | https://doi.org/10.1051/m2an:2000103 | |
Published online | 15 April 2002 |
Error Control and Andaptivity for a Phase Relaxation Model
1
Institute of Mathematics, Academia
Sinica, Beijing 100080, PR China. The first author was partially supported by
the National Natural Science Foundation of China under the grant
No. 19771080 and China National Key Project "Large Scale Scientific
and Engineering Computing" .
2
Department of Mathematics, University of Maryland,
College Park, MD 20742, USA. Partially supported by
NSF Grant DMS-9623394 and NSF SCREMS 9628467.
3
Institut für Angewandte Mathematik, Universität
Freiburg, 79104 Freiburg, Germany. Partially supported
by DFG and EU Grant HCM "Phase Transitions and Surface Tension" .
(alfred@mathematik.uni-freiburg.de)
Received:
2
July
1999
The phase relaxation model is a diffuse interface model with small parameter ε which consists of a parabolic PDE for temperature θ and an ODE with double obstacles for phase variable χ. To decouple the system a semi-explicit Euler method with variable step-size τ is used for time discretization, which requires the stability constraint τ ≤ ε. Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter h are further employed for space discretization. A posteriori error estimates are derived for both unknowns θ and χ, which exhibit the correct asymptotic order in terms of ε, h and τ. This result circumvents the use of duality, which does not even apply in this context. Several numerical experiments illustrate the reliability of the estimators and document the excellent performance of the ensuing adaptive method.
Mathematics Subject Classification: 65N15 / 65N30 / 65N50 / 80A22 / 35M05 / 35R35
Key words: Phase relaxation / diffuse interface / subdifferential operator / finite elements / a posteriori estimates / adaptivity.
© EDP Sciences, SMAI, 2000
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.