Free Access
Issue
ESAIM: M2AN
Volume 34, Number 4, July/August 2000
Page(s) 775 - 797
DOI https://doi.org/10.1051/m2an:2000103
Published online 15 April 2002
  1. Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. [CrossRef] [MathSciNet]
  2. Z. Chen, R.H. Nochetto and A. Schmidt, Adaptive finite element methods for diffuse interface models (in preparation).
  3. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
  4. Ph. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84.
  5. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. [CrossRef] [MathSciNet]
  6. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. [CrossRef] [MathSciNet]
  7. K. Eriksson, C. Johnson and S. Larsson, Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315-1325. [CrossRef] [MathSciNet]
  8. P. Grisvard, Elliptic Problems on Non-smooth Domains. Pitman, Boston (1985).
  9. X. Jiang and R.H. Nochetto, Optimal error estimates for semidiscrete phase relaxation models. RAIRO Modél. Math. Anal. Numér. 31 (1997) 91-120. [MathSciNet]
  10. X. Jiang and R.H. Nochetto, A P1-P1 finite element method for a phase relaxation model. I. Quasi uniform mesh. SIAM J. Numer. Anal. 35 (1998) 1176-1190. [CrossRef] [MathSciNet]
  11. X. Jiang, R.H. Nochetto and C. Verdi, A P1-P1 finite element method for a phase relaxation model. II. Adaptively refined meshes. SIAM J. Numér. Anal. 36 (1999) 974-999. [CrossRef] [MathSciNet]
  12. R.H. Nochetto, M. Paolini and C. Verdi, Continuous and semidiscrete traveling waves for a phase relaxation model. European J. Appl. Math. 5 (1994) 177-199. [MathSciNet]
  13. R.H. Nochetto, G. Savaré and C. Verdi, Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris Sér. I 326 (1998) 1437-1442.
  14. R.H. Nochetto, G. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 529-589.
  15. R.H. Nochetto, A. Schmidt and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp. 69 (2000) 1-24. [CrossRef] [MathSciNet]
  16. C. Verdi and A. Visintin, Numerical analysis of the multidimensional Stefan problem with supercooling and superheating. Boll. Un. Mat. Ital. B 7 (1987) 795-814.
  17. C. Verdi and A. Visintin, Error estimates for a semi-explicit numerical scheme for Stefan-type problems. Numer. Math. 52 (1988) 165-185. [CrossRef] [MathSciNet]
  18. A. Visintin, Stefan problem with phase relaxation. IMA J. Appl. Math. 34 (1985) 225-245. [CrossRef] [MathSciNet]
  19. A. Visintin, Supercooling and superheating effects in phase transitions. IMA J. Appl. Math. 35 (1986) 233-256. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you