Issue |
ESAIM: M2AN
Volume 34, Number 5, September/October 2000
|
|
---|---|---|
Page(s) | 953 - 980 | |
DOI | https://doi.org/10.1051/m2an:2000111 | |
Published online | 15 April 2002 |
More pressure in the finite element discretization of the Stokes problem
Analyse Numérique, C.N.R.S. & Université Pierre et Marie Curie,
B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France. (bernardi@ann.jussieu.fr)
Received:
22
October
1999
For the Stokes problem in a two- or three-dimensional bounded domain, we propose a new mixed finite element discretization which relies on a nonconforming approximation of the velocity and a more accurate approximation of the pressure. We prove that the velocity and pressure discrete spaces are compatible, in the sense that they satisfy an inf-sup condition of Babuška and Brezzi type, and we derive some error estimates.
Résumé
Pour le problème de Stokes dans un ouvert borné bi- ou tridimensionnel, on propose une discrétisation par un nouvel élément fini mixte, qui utilise une approximation non conforme de la vitesse et une approximation plus riche de la pression. On prouve que les espaces discrets de vitesse et de pression sont compatibles, au sens qu'ils vérifient une condition inf-sup de Babuška et Brezzi, et on en déduit des majorations d'erreur.
Mathematics Subject Classification: 65N30 / 76D07
Key words: Finite elements / Stokes problem / inf-sup condition / divergence-free basis functions.
© EDP Sciences, SMAI, 2000
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.