Issue |
ESAIM: M2AN
Volume 36, Number 6, November/December 2002
|
|
---|---|---|
Page(s) | 995 - 1012 | |
DOI | https://doi.org/10.1051/m2an:2003002 | |
Published online | 15 January 2003 |
A Comparison of Dual Lagrange Multiplier Spaces for Mortar Finite Element Discretizations
Math. Institut, Universität Stuttgart,
Pfaffenwaldring 57, 70 569 Stuttgart, Germany. wohlmuth@mathematik.uni-stuttgart.de.
Received:
12
July
2001
Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We focus on mortar finite element methods on non-matching triangulations. In particular, we discuss and analyze dual Lagrange multiplier spaces for lowest order finite elements. These non standard Lagrange multiplier spaces yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a consequence, standard efficient iterative solvers as multigrid methods or domain decomposition techniques can be easily adapted to the nonconforming situation. Here, we introduce new dual Lagrange multiplier spaces. We concentrate on the construction of locally supported and continuous dual basis functions. The optimality of the associated mortar method is shown. Numerical results illustrate the performance of our approach.
Mathematics Subject Classification: 65N30 / 65N55
Key words: Mortar finite elements / dual space / non-matching triangulations / multigrid methods.
© EDP Sciences, SMAI, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.