Free Access
Issue
ESAIM: M2AN
Volume 36, Number 6, November/December 2002
Page(s) 995 - 1012
DOI https://doi.org/10.1051/m2an:2003002
Published online 15 January 2003
  1. P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuß, H. Rentz-Reichert and C. Wieners, UG - a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1 (1997) 27-40. [CrossRef]
  2. D. Braess and W. Dahmen, Stability estimates of the mortar finite element method for 3-dimensional problems. East-West J. Numer. Math. 6 (1998) 249-263. [MathSciNet]
  3. F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. [CrossRef] [MathSciNet]
  4. F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289-302. [MathSciNet]
  5. C. Bernardi, Y. Maday and A.T. Patera, Domain decomposition by the mortar element method, in: Asymptotic and numerical methods for partial differential equations with critical parameters, H. Kaper et al. Eds., Reidel, Dordrecht (1993) 269-286.
  6. C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in: Nonlinear partial differential equations and their applications, H. Brezzi et al. Eds., Paris (1994) 13-51.
  7. L. Cazabeau, C. Lacour and Y. Maday, Numerical quadratures and mortar methods, in: Computational science for the 21st century. Dedicated to Prof. Roland Glowinski on the occasion of his 60th birthday. Symposium, Tours, France, May 5-7, 1997, John Wiley & Sons Ltd. (1997) 119-128.
  8. C. Kim, R.D. Lazarov, J.E. Pasciak and P.S. Vassilevski, Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39 (2001) 519-538. [CrossRef] [MathSciNet]
  9. R.H. Krause and B.I. Wohlmuth, Nonconforming domain decomposition techniques for linear elasticity. East-West J. Numer. Math. 8 (2000) 177-206. [MathSciNet]
  10. Y. Maday, F. Rapetti and B.I. Wohlmuth, The influence of quadrature formulas in 3d mortar methods. Lect. Notes Comput. Sci. Eng. 22, Springer-Verlag (2002).
  11. P. Oswald and B. Wohlmuth, On polynomial reproduction of dual FE bases, in: Thirteenth Int. Conf. on Domain Decomposition Methods (2002) 85-96.
  12. B.I. Wohlmuth and R.H. Krause, Multigrid methods based on the unconstrained product space arising from mortar finite element discretizations. SIAM J. Numer. Anal. 39 (2001) 192-213. [CrossRef] [MathSciNet]
  13. B.I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989-1012. [CrossRef] [MathSciNet]
  14. B.I. Wohlmuth, Discretization methods and iterative solvers based on domain decomposition. Lecture Notes in Comput. Sci. 17, Springer, Heidelberg (2001).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you