Issue |
ESAIM: M2AN
Volume 36, Number 6, November/December 2002
|
|
---|---|---|
Page(s) | 1133 - 1159 | |
DOI | https://doi.org/10.1051/m2an:2003009 | |
Published online | 15 January 2003 |
A hybrid scheme to compute contact discontinuities in one-dimensional Euler systems
1
LATP-UMR CNRS 6632, C.M.I.,
Université de Provence, 13453 Marseille Cedex 13, France. gallouet@cmi.univ-mrs.fr., herard@cmi.univ-mrs.fr.
2
Département MFTT,
Électricité de France - R&D, 78401 Chatou Cedex, France. herard@chi80bk.der.edf.fr., seguin@chi80bk.der.edf.fr.
Received:
2
May
2002
Revised:
31
July
2002
The present paper is devoted to the computation of single phase or two phase flows using the single-fluid approach. Governing equations rely on Euler equations which may be supplemented by conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of pressure, density and additional variables are exhibited. It is shown first that a standard conservative formulation of above mentioned schemes enables to predict “perfectly” unsteady contact discontinuities on coarse meshes, when the equation of state (EOS) belongs to the first class. On the basis of previous work issuing from literature, an almost conservative though modified version of the scheme is proposed to deal with EOS in the second or third class. Numerical evidence shows that the accuracy of approximations of discontinuous solutions of standard Riemann problems is strengthened on coarse meshes, but that convergence towards the right shock solution may be lost in some cases involving complex EOS in the third class. Hence, a blend scheme is eventually proposed to benefit from both properties (“perfect” representation of contact discontinuities on coarse meshes, and correct convergence on finer meshes). Computational results based on an approximate Godunov scheme are provided and discussed.
Mathematics Subject Classification: 65M99 / 76M15 / 76N15 / 80A10
Key words: Godunov scheme / Euler system / contact discontinuities / thermodynamics / conservative schemes.
© EDP Sciences, SMAI, 2002
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.