Free Access
Issue
ESAIM: M2AN
Volume 36, Number 6, November/December 2002
Page(s) 1133 - 1159
DOI https://doi.org/10.1051/m2an:2003009
Published online 15 January 2003
  1. R. Abgrall, How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125 (1995) 150-160. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Abgrall and S. Karni, Computations of compressible multifluids. J. Comput. Phys. 169 (2001) 594-623. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Allaire, S. Clerc and S. Kokh, A five equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577-616. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Allaire, S. Clerc and S. Kokh, A five equation model for the numerical solution of interfaces in two phase flows. C.R. Acad. Sci. Paris Sér. I Math. 331 (2000) 1017-1022. [Google Scholar]
  5. T. Barberon, P. Helluy and S. Rouy, Finite Volume simulations of cavitating flows, in Proc. of Third Symposium on Finite Volumes for Complex Applications, R. Herbin and D. Kroner Eds., Hermes Penton Science (2002) 455-462. [Google Scholar]
  6. M. Barret, E. Faucher and J.M. Hérard, Some schemes to compute unsteady flashing flows. AIAA J. 40 (2002) 905-913. [CrossRef] [Google Scholar]
  7. S. Bilicki and D. Kardas, Approximation of thermodynamic properties for subcooled water and superheated steam. Polish Academy of Sciences (1991). [Google Scholar]
  8. S. Bilicki and J. Kestin, Physical aspects of the relaxation model in two phase flows. Proc. Roy. Soc. London A 428 (1990) 379-397. [CrossRef] [Google Scholar]
  9. S. Bilicki, J. Kestin and M.M. Pratt, A reinterpretation of the results of the moby dick experiments in terms of the non equilibrium model. J. Fluid Eng. 112 (1990) 212-217. [CrossRef] [Google Scholar]
  10. T. Buffard, T. Gallouët and J.M. Hérard, Schéma VFRoe en variables caractéristiques. Principe de base et applications aux gaz réels. EDF-DER Report HE-41/96/041/A (1996) in French. [Google Scholar]
  11. T. Buffard, T. Gallouët and J.M. Hérard, A sequel to a rough Godunov scheme. Application to real gas flows. Comput. & Fluids 29 (2000) 813-847. [Google Scholar]
  12. M. Buffat and A. Page, Extension of Roe's solver for multi species real gases. LMFA report, École Centrale de Lyon, Lyon, France (1995). [Google Scholar]
  13. S. Clerc, Accurate computation of contact discontinuities in flows with general equations of state. Comput. Methods Appl. Mech. Engrg. 178 (1999) 245-255. [CrossRef] [Google Scholar]
  14. S. Clerc, Numerical simulation of the homogeneous equilibrium model for two phase flows. J. Comput. Phys. 161 (2000) 354-375. [CrossRef] [MathSciNet] [Google Scholar]
  15. F. Coquel and B. Perthame, Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics equations. SIAM J. Numer. Anal. 35 (1998) 2223-2249 (in Memory of Ami Harten). [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Faucher, J.M. Hérard, M. Barret and C. Toulemonde, Computation of flashing flows in variable cross-section ducts. Int. J. Comput. Fluid Dyn. 13 (2000) 365-391. [CrossRef] [MathSciNet] [Google Scholar]
  17. R.P. Fedkiw, T. Aslam, B. Merriman and S. Osher, A non oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid approach). J. Comput. Phys. 152 (1999) 457. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Gallouët, J.M. Hérard and N. Seguin, Some recent Finite Volume schemes to compute Euler equations using real gas EOS. Internat. J. Numer. Methods Fluids 39-12 (2002) 1073-1138. [Google Scholar]
  19. T. Gallouët, J.M. Hérard and N. Seguin, An hybrid scheme to compute contact discontinuities in Euler systems. LATP Report 01-027, Université de Provence, France (2001). [Google Scholar]
  20. T. Gallouët, J.M. Hérard and N. Seguin, On the use of some symmetrizing variables to deal with vacuum (submitted). [Google Scholar]
  21. S. Gavrilyuk and R. Saurel, Mathematical and numerical modelling of two phase compressible flows with inertia. J. Comput. Phys. 175 (2002) 326-360. [CrossRef] [MathSciNet] [Google Scholar]
  22. E. Godlewski and P.A. Raviart, Numerical approximation for hyperbolic systems of conservation laws. Springer Verlag (1996). [Google Scholar]
  23. S.K. Godunov, A difference method for numerical calculation of discontinous equations of hydrodynamics. Sbornik (1959) 271-300 (in Russian). [Google Scholar]
  24. X. Hou and P. G. Le FLoch, Why non conservative schemes converge to wrong solutions. Math. Comp. 62 (1994) 497-530. [CrossRef] [MathSciNet] [Google Scholar]
  25. A. In, Numerical evaluation of an energy relaxation method for inviscid real fluids. SIAM J. Sci. Comput. 21 (1999) 340-365. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. In, Méthodes numériques pour les équations de la dynamique des gaz complexes et écoulements diphasiques. Ph.D. thesis, Université Paris VI, France (1999). [Google Scholar]
  27. M. Ishii, Thermo-fluid dynamic theory of two-phase flows. Collection de la Direction des Etudes et Recherches d'Electicité de France (1975). [Google Scholar]
  28. A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff and D.S. Stewart, Two-phase modelling of DDT: structure of the velocity relaxation zone. Phys. Fluids 9 (1997) 3885-3897. [CrossRef] [Google Scholar]
  29. S. Karni, Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112 (1994) 31-43. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  30. S. Karni, Hybrid multifluid algorithms. SIAM J. Sci. Comput. 17 (1996) 1019-1039. [CrossRef] [MathSciNet] [Google Scholar]
  31. S. Karni and R. Abgrall, Ghost fluid for the poor: a single fluid algorithm for multifluid. Oberwolfach (2001). [Google Scholar]
  32. R. Kee, J. Miller and T. Jefferson, Chemkin: a general purpose, problem independant transportable fortran chemical kinetics code package. SAND Report 80-8003, Sandia National Laboratories. [Google Scholar]
  33. S. Kokh, Aspects numériques et théoriques de la modélisation des écoulements diphasiques compressibles par des méthodes de capture d'interface. Ph.D. thesis, Université Paris VI, France (2001). [Google Scholar]
  34. F. Lagoutière, Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants. Ph.D. thesis, Université Paris VI, France (2000). [Google Scholar]
  35. A. Letellier and A. Forestier, Le problème de Riemann en fluide quelconque. CEA-DMT Report 93/451 (1993) in French. [Google Scholar]
  36. R. LeVeque, Numerical methods for conservation laws. Birkhauser (1992). [Google Scholar]
  37. R. Pollak, Die thermodynamischen eigenschaften von wasser dargestellt durch eine kanonische zustands gleichung fur die fluiden homogenen und heterogenen zustande bis 1200 Kelvin und 3000 bars. Ph.D. thesis, Ruhr Universitat, Germany (1974). [Google Scholar]
  38. P. Rascle and O. Morvant, Interface utilisateur de Thetis - THErmodynamique en Tables d'InterpolationS. EDF-DER Report HT-13/95021B, Clamart, France (1995) in French. [Google Scholar]
  39. P.L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43 (1981) 357-372. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  40. S. Rouy, Modélisation mathématique et numérique d'écoulements diphasiques compressibles. Ph.D. thesis, Université de Toulon et du Var, France (2000). [Google Scholar]
  41. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425-467. [CrossRef] [MathSciNet] [Google Scholar]
  42. R. Saurel and R. Abgrall, A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21 (1999) 1115-1145. [CrossRef] [MathSciNet] [Google Scholar]
  43. J. Sethian, Level set methods. Cambridge University Press (1996). [Google Scholar]
  44. K.M. Shyue, A fluid mixture type algorithm for compressible multicomponent flow with Van der Waals equation of state. J. Comput. Phys. 156 (1999) 43-88. [CrossRef] [MathSciNet] [Google Scholar]
  45. J. Smoller, Shock waves and reaction diffusion equations. Springer Verlag (1983). [Google Scholar]
  46. E.F. Toro, Riemann solvers and numerical methods for fluid dynamics. Springer Verlag (1997). [Google Scholar]
  47. I. Toumi, Contribution à la modélisation numérique des écoulements diphasiques eau-vapeur. Thèse d'habilitation, Université Paris Sud, France (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you