Issue |
ESAIM: M2AN
Volume 37, Number 1, January/February 2003
|
|
---|---|---|
Page(s) | 73 - 90 | |
DOI | https://doi.org/10.1051/m2an:2003019 | |
Published online | 15 March 2003 |
Spectral methods for one-dimensional kinetic models of granular flows and numerical quasi elastic limit
1
Department of Mathematics and Applications, University of
Milano-Bicocca, Milano, Italy. naldi@matapp.unimib.it.
2
Department of Mathematics, University of
Ferrara, Via Machiavelli 35, 44100 Ferrara, Italy. pareschi@dm.unife.it.
3
Department of
Mathematics, University of Pavia, Via Ferrata 1, 27100 Pavia,
Italy. toscani@dimat.unipv.it.
Received:
4
March
2002
In this paper we introduce numerical schemes for a one-dimensional kinetic model of the Boltzmann equation with dissipative collisions and variable coefficient of restitution. In particular, we study the numerical passage of the Boltzmann equation with singular kernel to nonlinear friction equations in the so-called quasi elastic limit. To this aim we introduce a Fourier spectral method for the Boltzmann equation [CITE] and show that the kernel modes that define the spectral method have the correct quasi elastic limit providing a consistent spectral method for the limiting nonlinear friction equation.
Mathematics Subject Classification: 65L60 / 65R20 / 76P05 / 82C40
Key words: Boltzmann equation / granular media / spectral methods / singular integrals / nonlinear friction equation / quasi elastic limit.
© EDP Sciences, SMAI, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.