Issue |
ESAIM: M2AN
Volume 37, Number 1, January/February 2003
|
|
---|---|---|
Page(s) | 63 - 72 | |
DOI | https://doi.org/10.1051/m2an:2003020 | |
Published online | 15 March 2003 |
Discontinuous Galerkin and the Crouzeix–Raviart element: Application to elasticity
1
Department of Applied Mechanics,
Chalmers University of Technology, S–412 96 Göteborg, Sweden.
2
Department of Mathematics,
Chalmers University of Technology, S–412 96 Göteborg, Sweden.
Received:
5
July
2001
We propose a discontinuous Galerkin method for linear elasticity, based on discontinuous piecewise linear approximation of the displacements. We show optimal order a priori error estimates, uniform in the incompressible limit, and thus locking is avoided. The discontinuous Galerkin method is closely related to the non-conforming Crouzeix–Raviart (CR) element, which in fact is obtained when one of the stabilizing parameters tends to infinity. In the case of the elasticity operator, for which the CR element is not stable in that it does not fulfill a discrete Korn's inequality, the discontinuous framework naturally suggests the appearance of (weakly consistent) stabilization terms. Thus, a stabilized version of the CR element, which does not lock, can be used for both compressible and (nearly) incompressible elasticity. Numerical results supporting these assertions are included. The analysis directly extends to higher order elements and three spatial dimensions.
Mathematics Subject Classification: 65N30 / 74B05
Key words: Crouzeix–Raviart element / Nitsche's method / discontinuous Galerkin / incompressible elasticity.
© EDP Sciences, SMAI, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.