Free Access
Issue
ESAIM: M2AN
Volume 37, Number 6, November-December 2003
Page(s) 1013 - 1043
DOI https://doi.org/10.1051/m2an:2003065
Published online 15 November 2003
  1. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley (2000). [Google Scholar]
  2. Th. Apel, Anisotropic finite elements: Local estimates and applications, Advances in Numerical Mathematics. Teubner, Stuttgart (1999). [Google Scholar]
  3. I. Babuška, T. Strouboulis and C.S. Upadhyay, A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Comput. Methods Appl. Mech. Engrg. 114 (1994) 307–378. [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Babuška, T. Strouboulis, C.S. Upadhyay, S.K. Gangaraj and K. Copps, Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Methods Eng. 37 (1994) 1073–1123. [CrossRef] [Google Scholar]
  5. S. Bartels and C. Carstensen, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: High order FEM. Math. Comp. 71 (2002) 971–994. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L2-projection in Formula . Math. Comp. 71 (2002) 147–156. [CrossRef] [MathSciNet] [Google Scholar]
  7. C. Carstensen, Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces. Math. Comp. 71 (2002) 157–163. [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math. Comp. 71 (2002) 945–969. [CrossRef] [MathSciNet] [Google Scholar]
  9. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). [Google Scholar]
  10. M. Dobrowolski, S. Gräf and C. Pflaum, On a posteriori error estimators in the finite element method on anisotropic meshes. Electron. Trans. Numer. Anal. 8 (1999) 36–45. [MathSciNet] [Google Scholar]
  11. G. Kunert, A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes. Logos Verlag, Berlin (1999). Also Ph.D. thesis, TU Chemnitz, http://archiv.tu-chemnitz.de/pub/1999/0012/index.html [Google Scholar]
  12. G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86 (2000) 471–490, DOI 10.1007/s002110000170. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Kunert, A local problem error estimator for anisotropic tetrahedral f inite element meshes. SIAM J. Numer. Anal. 39 (2001) 668–689. [CrossRef] [MathSciNet] [Google Scholar]
  14. G. Kunert, A posteriori L2 error estimation on anisotropic tetrahedral finite element meshes. IMA J. Numer. Anal. 21 (2001) 503–523. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction–diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15 (2001) 237–259. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Kunert and S. Nicaise, Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes, preprint SFB393/01–20, TU Chemnitz, July 2001. Also http://archiv.tu-chemnitz.de/pub/2001/0059/index.html [Google Scholar]
  17. G. Kunert and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86 (2000) 283–303, DOI 10.1007/s002110000152. [CrossRef] [MathSciNet] [Google Scholar]
  18. L.A. Oganesyan and L.A. Rukhovets, Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armyanskoi SSR, Jerevan (1979), in Russian. [Google Scholar]
  19. G. Raugel, Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le Laplacien dans un polygone. C. R. Acad. Sci. Paris, Sér. I Math 286 (1978) A791–A794. [Google Scholar]
  20. R. Rodriguez, Some remarks on the Zienkiewicz–Zhu estimator. Numer. Meth. PDE 10 (1994) 625–635. [CrossRef] [Google Scholar]
  21. H.G. Roos and T. Linß, Gradient recovery for singularly perturbed boundary value problems II: Two-dimensional convection-diffusion. Math. Models Methods Appl. Sci. 11 (2001) 1169–1179. [CrossRef] [MathSciNet] [Google Scholar]
  22. K.G. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373–398. [CrossRef] [MathSciNet] [Google Scholar]
  23. O. Steinbach, On the stability of the L2-projection in fractional Sobolev spaces. Numer. Math. 88 (2001) 367–379. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley-Teubner, Chichester, Stuttgart (1996). [Google Scholar]
  25. Zh. Zhang, Superconvergent finite element method on a Shishkin mesh for convection-diffusion problems. Report 98-006, Texas Tech University (1998). [Google Scholar]
  26. O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg. 24 (1987) 337–357. [CrossRef] [MathSciNet] [Google Scholar]
  27. O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Engrg. 101 (1992) 207–224. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you