Issue |
ESAIM: M2AN
Volume 39, Number 5, September-October 2005
|
|
---|---|---|
Page(s) | 1019 - 1040 | |
DOI | https://doi.org/10.1051/m2an:2005044 | |
Published online | 15 September 2005 |
Optimal control and numerical adaptivity for advection–diffusion equations
1
MOX–Dipartimento di Matematica “F. Brioschi”,
Politecnico di Milano, 20133, Milano, Italy.
luca.dede@mate.polimi.it
2
École Polytechnique
Fédérale de Lausanne (EPFL), FSB, Chaire de Modelisation et
Calcul Scientifique (CMCS), Station 8, 1015, Lausanne,
Switzerland. alfio.quarteroni@epfl.ch
Received:
9
February
2005
Revised:
22
April
2005
We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the Lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from splitting the error on the cost functional into the sum of an iteration error plus a discretization error. Once the former is reduced below a given threshold (and therefore the computed solution is “near” the optimal solution), the adaptive strategy is operated on the discretization error. To prove the effectiveness of the proposed methods, we report some numerical tests, referring to problems in which the control term is the source term of the advection–diffusion equation.
Mathematics Subject Classification: 35J25 / 49J20 / 65N30 / 76R50
Key words: Optimal control problems / partial differential equations / finite element approximation / stabilized Lagrangian / numerical adaptivity / advection–diffusion equations.
© EDP Sciences, SMAI, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.