Free Access
Issue
ESAIM: M2AN
Volume 39, Number 5, September-October 2005
Page(s) 1019 - 1040
DOI https://doi.org/10.1051/m2an:2005044
Published online 15 September 2005
  1. V.I. Agoshkov, Optimal Control Methods and Adjoint Equations in Mathematical Physics Problems. Institute of Numerical Mathematics, Russian Academy of Science, Moscow (2003). [Google Scholar]
  2. A.K. Aziz, J.W. Wingate and M.J. Balas, Control Theory of Systems Governed by Partial Differential Equations. Academic Press, New York (1971). [Google Scholar]
  3. R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10 (2001) 1–102. [CrossRef] [MathSciNet] [Google Scholar]
  4. R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: basic concepts. SIAM J. Control Optim. 39 (2000) 113–132. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Braack and A. Ern, A posteriori control of modelling errors and Discretization errors. SIAM Multiscale Model. Simul. 1 (2003) 221–238. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  6. G. Finzi, G. Pirovano and M. Volta, Gestione della Qualità dell'aria. Modelli di Simulazione e Previsione. Mc Graw-Hill, Milano (2001). [Google Scholar]
  7. L. Formaggia, S. Micheletti and S. Perotto, Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems. Appl. Numer. Math. 51 (2004) 511–533. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.N. Kolmogorov and S.V. Fomin, Elements of Theory of Functions and Functional Analysis. V.M. Tikhomirov, Nauka, Moscow (1989). [Google Scholar]
  9. R. Li, W. Liu, H. Ma and T. Tang, Adaptive finite element approximation for distribuited elliptic optimal control problems. SIAM J. Control Optim. 41 (2001) 1321–1349. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, New York (1971). [Google Scholar]
  11. W. Liu and N. Yan, A posteriori error estimates for some model boundary control problems. J. Comput. Appl. Math. 120 (2000) 159–173. [CrossRef] [MathSciNet] [Google Scholar]
  12. W. Liu and N. Yan, A Posteriori error estimates for distribuited convex optimal control problems. Adv. Comput. Math. 15 (2001) 285–309. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids. Clarendon Press, Oxford (2001). [Google Scholar]
  14. M. Picasso, Anisotropic a posteriori error estimates for an optimal control problem governed by the heat equation. Int. J. Numer. Method PDE (2004), submitted. [Google Scholar]
  15. O. Pironneau and E. Polak, Consistent approximation and approximate functions and gradients in optimal control. SIAM J. Control Optim. 41 (2002) 487–510. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin and Heidelberg (1994). [Google Scholar]
  17. J. Sokolowski and J.P. Zolesio, Introduction to Shape Optimization (Shape Sensitivity Analysis). Springer-Verlag, New York (1991). [Google Scholar]
  18. R.B. Stull, An Introduction to Boundary Layer Meteorology. Kluver Academic Publishers, Dordrecht (1988). [Google Scholar]
  19. F.P. Vasiliev, Methods for Solving the Extremum Problems. Nauka, Moscow (1981). [Google Scholar]
  20. D.A. Venditti and D.L. Darmofal, Grid adaption for functional outputs: application to two-dimensional inviscid flows. J. Comput. Phys. 176 (2002) 40–69. [CrossRef] [MathSciNet] [Google Scholar]
  21. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, Teubner (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you