Issue |
ESAIM: M2AN
Volume 42, Number 4, July-August 2008
|
|
---|---|---|
Page(s) | 683 - 698 | |
DOI | https://doi.org/10.1051/m2an:2008019 | |
Published online | 05 June 2008 |
An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment
1
Département de Mathématiques et Applications, École Normale Supérieure & CNRS, 45 rue d'Ulm, 75230 Paris cedex 05, France. francois.bouchut@ens.fr
2
Departamento de Anlálisis Matemático, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinons s/n, 29071 Málaga, Spain. morales@anamat.cie.uma.es
Received:
5
March
2007
Revised:
11
December
2007
We consider the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water. The difficulty in this system comes from the coupling terms involving some derivatives of the unknowns that make the system nonconservative, and eventually nonhyperbolic. Due to these terms, a numerical scheme obtained by performing an arbitrary scheme to each layer, and using time-splitting or other similar techniques leads to instabilities in general. Here we use entropy inequalities in order to control the stability. We introduce a stable well-balanced time-splitting scheme for the two-layer shallow water system that satisfies a fully discrete entropy inequality. In contrast with Roe type solvers, it does not need the computation of eigenvalues, which is not simple for the two-layer shallow water system. The solver has the property to keep the water heights nonnegative, and to be able to treat vanishing values.
Mathematics Subject Classification: 74S10 / 35L60 / 74G15
Key words: Two-layer shallow water / nonconservative system / complex eigenvalues / time-splitting / entropy inequality / well-balanced scheme / nonnegativity.
© EDP Sciences, SMAI, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.