Issue |
ESAIM: M2AN
Volume 42, Number 5, September-October 2008
|
|
---|---|---|
Page(s) | 821 - 849 | |
DOI | https://doi.org/10.1051/m2an:2008025 | |
Published online | 04 July 2008 |
The hp-version of the boundary element method with quasi-uniform meshes in three dimensions
Department of Mathematical Sciences, Brunel University,
Uxbridge, West London UB8 3PH, UK. albespalov@yahoo.com; norbert.heuer@gmail.com
Received:
16
October
2007
We prove an a priori error estimate for the hp-version of the boundary element method with hypersingular operators on piecewise plane open or closed surfaces. The underlying meshes are supposed to be quasi-uniform. The solutions of problems on polyhedral or piecewise plane open surfaces exhibit typical singularities which limit the convergence rate of the boundary element method. On closed surfaces, and for sufficiently smooth given data, the solution is H1-regular whereas, on open surfaces, edge singularities are strong enough to prevent the solution from being in H1. In this paper we cover both cases and, in particular, prove an a priori error estimate for the h-version with quasi-uniform meshes. For open surfaces we prove a convergence like O(h1/2p-1), h being the mesh size and p denoting the polynomial degree. This result had been conjectured previously.
Mathematics Subject Classification: 41A10 / 65N15 / 65N38
Key words: hp-version with quasi-uniform meshes / boundary element method / singularities.
© EDP Sciences, SMAI, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.