Free Access
Issue
ESAIM: M2AN
Volume 42, Number 6, November-December 2008
Page(s) 991 - 1019
DOI https://doi.org/10.1051/m2an:2008036
Published online 25 September 2008
  1. R. Abgrall, Generalization of the Roe scheme for the computation of mixture of perfect gases. Rech. Aérosp. 6 (1988) 31–43. [Google Scholar]
  2. R. Abgrall, How to prevent pressure oscillations in multicomponent flows: A quasi conservative approach. J. Comp. Phys. 125 (1996) 150–160. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Abgrall and S. Karni, Ghost-fluids for the poor: a single fluid algorithm for multifluids, in Hyperbolic problems: theory, numerics, applications, Vols. I, II (Magdeburg, 2000), Birkhäuser, Basel, Internat. Ser. Numer. Math. 140 (2001) 1–10. [Google Scholar]
  4. R. Abgrall and S. Karni, Computations of compressible multifluids. J. Comp. Phys. 169 (2001) 594–623. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase flow mixtures. J. Comp. Phys. 186 (2003) 361–396. [CrossRef] [MathSciNet] [Google Scholar]
  6. R. Abgrall, B. N'Konga and R. Saurel, Efficient numerical approximation of compressible multi-material flow for unstructured meshes. Comput. Fluids 4 (2003) 571–605. [CrossRef] [Google Scholar]
  7. I.-L. Chern, J. Glimm, O. McBryan, B. Plohr and S. Yaniv, Front tracking for gas dynamics. J. Comp. Phys. 62 (1986) 83–110. [CrossRef] [Google Scholar]
  8. A. Chertock and A. Kurganov, Conservative locally moving mesh method for multifluid flows. Proceedings of the Fourth International Symposium on Finite Volumes for Complex Applications, Marrakech (2005) 273–284. [Google Scholar]
  9. F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows. J. Comp. Phys. 136 (1997) 272–288. [CrossRef] [MathSciNet] [Google Scholar]
  10. S.F. Davis, An interface tracking method for hyperbolic systems of conservation laws. Appl. Numer. Math. 10 (1992) 447–472. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.P. Fedkiw, T. Aslam, B. Merriman and S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comp. Phys. 152 (1999) 457–492. [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Glimm, J.W. Grove, X.L. Li, K.-M. Shyue, Y. Zeng and Q. Zhang, Three-dimensional front tracking. SIAM J. Sci. Comput. 19 (1998) 703–727. [CrossRef] [MathSciNet] [Google Scholar]
  13. J. Glimm, X.L. Li, Y. Liu and N. Zhao, Conservative front tracking and level set algorithms. Proc. Natl. Acad. Sci. USA 98 (2001) 14198–14201. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Glimm, Y. Liu, Z. Xu and N. Zhao, Conservative front tracking with improved accuracy. SIAM J. Numer. Anal. 41 (2003) 1926–1947. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer-Verlag, New York (1996). [Google Scholar]
  16. E. Godlewski and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. I. The scalar case. Numer. Math. 97 (2004) 81–130. [CrossRef] [MathSciNet] [Google Scholar]
  17. E. Godlewski, K.-C. Le Thanh, P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. II. The case of systems. ESAIM: M2AN 39 (2005) 649–692. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  18. S. Gottlieb, C.-W. Shu and E. Tadmor, High order time discretization methods with the strong stability property. SIAM Rev. 43 (2001) 89–112. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  19. J.-F. Haas and B. Sturtevant, Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181 (1987) 313–336. [Google Scholar]
  20. A. Harten and J.M. Hyman, Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comp. Phys. 50 (1983) 235–269. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes, I. SIAM J. Numer. Anal. 24 (1987) 279–309. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Harten, S. Osher, B. Engquist and S.R. Chakravarthy, Some results on uniformly high order accurate essentially non-oscillatory schemes. Appl. Numer. Math. 2 (1986) 347–377. [CrossRef] [MathSciNet] [Google Scholar]
  23. P. Jenny, B. Mueller and H. Thomann, Correction of conservative Euler solvers for gas mixtures. J. Comp. Phys. 132 (1997) 91–107. [CrossRef] [Google Scholar]
  24. S. Karni, Multicomponent flow calculations by a consistent primitive algorithm. J. Comp. Phys. 112 (1994) 31–43. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  25. S. Karni, Compressible bubbles with surface tension, in Sixteenth International Conference on Numerical Methods in Fluid Dynamics (Arcachon, 1998), Springer, Berlin, Lecture Notes in Physics 515 (1998) 506–511. [Google Scholar]
  26. S. Karni, E. Kirr, A. Kurganov and G. Petrova, Compressible two-phase flows by central and upwind schemes. ESAIM: M2AN 38 (2004) 477–493. [CrossRef] [EDP Sciences] [Google Scholar]
  27. D. Kröner, Numerical Schemes for Conservation Laws. Wiley, Chichester (1997). [Google Scholar]
  28. A. Kurganov and C.-T. Lin, On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2 (2007) 141–163. [MathSciNet] [Google Scholar]
  29. A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comp. Phys. 160 (2000) 241–282. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  30. A. Kurganov, S. Noelle and G. Petrova, Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21 (2001) 707–740. [CrossRef] [MathSciNet] [Google Scholar]
  31. B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comp. Phys. 95 (1991) 59–84. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics. Cambridge University Press (2002). [Google Scholar]
  33. K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24 (2003) 1157–1174. [CrossRef] [MathSciNet] [Google Scholar]
  34. W. Mulder, S. Osher and J.A. Sethian, Computing interface motion in compressible gas dynamics. J. Comp. Phys. 100 (1992) 209–228. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  35. H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comp. Phys. 87 (1990) 408–463. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  36. J.J. Quirk and S. Karni, On the dynamics of a shock-bubble interaction. J. Fluid Mech. 318 (1996) 129–163. [CrossRef] [Google Scholar]
  37. P.L. Roe, Fluctuations and signals – a framework for numerical evolution problems, in Numerical Methods for Fluid Dynamics, Academic Press, New York (1982) 219–257. [Google Scholar]
  38. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comp. Phys. 150 (1999) 425–467. [CrossRef] [MathSciNet] [Google Scholar]
  39. K.-M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comp. Phys. 142 (1998) 208–242. [NASA ADS] [CrossRef] [Google Scholar]
  40. K.-M. Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comp. Phys. 156 (1999) 43–88. [CrossRef] [MathSciNet] [Google Scholar]
  41. P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21 (1984) 995–1011. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  42. V. Ton, Improved shock-capturing methods for multicomponent and reacting flows. J. Comp. Phys. 128 (1996) 237–253. [CrossRef] [Google Scholar]
  43. E.F. Toro, Riemann solvers and numerical methods for fluid dynamics. A practical introduction. Second edition, Springer-Verlag, Berlin (1999). [Google Scholar]
  44. G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas and Y.-J. Jan, A front-tracking method for the computations of multiphase flow. J. Comp. Phys. 169 (2001) 708–759. [CrossRef] [Google Scholar]
  45. B. van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. J. Comp. Phys. 32 (1979) 101–136. [NASA ADS] [CrossRef] [Google Scholar]
  46. J. Wackers and B. Koren, Five-equation model for compressible two-fluid flow. Report MAS-E0414, CWI, Amsterdam (2004). Available at http://ftp.cwi.nl/CWIreports/MAS/MAS-E0414.pdf [Google Scholar]
  47. S.-P. Wang, M.H. Anderson, J.G. Oakley, M.L. Corradini and R. Bonazza, A thermodynamically consistent and fully conservative treatment of contact discontinuities for compressible multicomponent flows. J. Comp. Phys. 195 (2004) 528–559. [CrossRef] [Google Scholar]
  48. A. Wardlaw, Underwater explosion test cases. IHTR 2069 (1998). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you