Free Access
Volume 42, Number 6, November-December 2008
Page(s) 991 - 1019
Published online 25 September 2008
  1. R. Abgrall, Generalization of the Roe scheme for the computation of mixture of perfect gases. Rech. Aérosp. 6 (1988) 31–43.
  2. R. Abgrall, How to prevent pressure oscillations in multicomponent flows: A quasi conservative approach. J. Comp. Phys. 125 (1996) 150–160. [CrossRef] [MathSciNet]
  3. R. Abgrall and S. Karni, Ghost-fluids for the poor: a single fluid algorithm for multifluids, in Hyperbolic problems: theory, numerics, applications, Vols. I, II (Magdeburg, 2000), Birkhäuser, Basel, Internat. Ser. Numer. Math. 140 (2001) 1–10.
  4. R. Abgrall and S. Karni, Computations of compressible multifluids. J. Comp. Phys. 169 (2001) 594–623. [CrossRef] [MathSciNet]
  5. R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase flow mixtures. J. Comp. Phys. 186 (2003) 361–396. [CrossRef] [MathSciNet]
  6. R. Abgrall, B. N'Konga and R. Saurel, Efficient numerical approximation of compressible multi-material flow for unstructured meshes. Comput. Fluids 4 (2003) 571–605. [CrossRef]
  7. I.-L. Chern, J. Glimm, O. McBryan, B. Plohr and S. Yaniv, Front tracking for gas dynamics. J. Comp. Phys. 62 (1986) 83–110. [CrossRef]
  8. A. Chertock and A. Kurganov, Conservative locally moving mesh method for multifluid flows. Proceedings of the Fourth International Symposium on Finite Volumes for Complex Applications, Marrakech (2005) 273–284.
  9. F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows. J. Comp. Phys. 136 (1997) 272–288. [CrossRef] [MathSciNet]
  10. S.F. Davis, An interface tracking method for hyperbolic systems of conservation laws. Appl. Numer. Math. 10 (1992) 447–472. [CrossRef] [MathSciNet]
  11. R.P. Fedkiw, T. Aslam, B. Merriman and S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comp. Phys. 152 (1999) 457–492. [CrossRef] [MathSciNet]
  12. J. Glimm, J.W. Grove, X.L. Li, K.-M. Shyue, Y. Zeng and Q. Zhang, Three-dimensional front tracking. SIAM J. Sci. Comput. 19 (1998) 703–727. [CrossRef] [MathSciNet]
  13. J. Glimm, X.L. Li, Y. Liu and N. Zhao, Conservative front tracking and level set algorithms. Proc. Natl. Acad. Sci. USA 98 (2001) 14198–14201. [CrossRef] [MathSciNet]
  14. J. Glimm, Y. Liu, Z. Xu and N. Zhao, Conservative front tracking with improved accuracy. SIAM J. Numer. Anal. 41 (2003) 1926–1947. [CrossRef] [MathSciNet]
  15. E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer-Verlag, New York (1996).
  16. E. Godlewski and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. I. The scalar case. Numer. Math. 97 (2004) 81–130. [CrossRef] [MathSciNet]
  17. E. Godlewski, K.-C. Le Thanh, P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. II. The case of systems. ESAIM: M2AN 39 (2005) 649–692. [CrossRef] [EDP Sciences] [MathSciNet]
  18. S. Gottlieb, C.-W. Shu and E. Tadmor, High order time discretization methods with the strong stability property. SIAM Rev. 43 (2001) 89–112. [NASA ADS] [CrossRef] [MathSciNet]
  19. J.-F. Haas and B. Sturtevant, Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181 (1987) 313–336.
  20. A. Harten and J.M. Hyman, Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comp. Phys. 50 (1983) 235–269. [CrossRef] [MathSciNet]
  21. A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes, I. SIAM J. Numer. Anal. 24 (1987) 279–309. [CrossRef] [MathSciNet]
  22. A. Harten, S. Osher, B. Engquist and S.R. Chakravarthy, Some results on uniformly high order accurate essentially non-oscillatory schemes. Appl. Numer. Math. 2 (1986) 347–377. [CrossRef] [MathSciNet]
  23. P. Jenny, B. Mueller and H. Thomann, Correction of conservative Euler solvers for gas mixtures. J. Comp. Phys. 132 (1997) 91–107. [CrossRef]
  24. S. Karni, Multicomponent flow calculations by a consistent primitive algorithm. J. Comp. Phys. 112 (1994) 31–43. [NASA ADS] [CrossRef] [MathSciNet]
  25. S. Karni, Compressible bubbles with surface tension, in Sixteenth International Conference on Numerical Methods in Fluid Dynamics (Arcachon, 1998), Springer, Berlin, Lecture Notes in Physics 515 (1998) 506–511.
  26. S. Karni, E. Kirr, A. Kurganov and G. Petrova, Compressible two-phase flows by central and upwind schemes. ESAIM: M2AN 38 (2004) 477–493. [CrossRef] [EDP Sciences]
  27. D. Kröner, Numerical Schemes for Conservation Laws. Wiley, Chichester (1997).
  28. A. Kurganov and C.-T. Lin, On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2 (2007) 141–163. [MathSciNet]
  29. A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comp. Phys. 160 (2000) 241–282. [NASA ADS] [CrossRef] [MathSciNet]
  30. A. Kurganov, S. Noelle and G. Petrova, Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21 (2001) 707–740. [CrossRef] [MathSciNet]
  31. B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comp. Phys. 95 (1991) 59–84. [CrossRef] [MathSciNet]
  32. R. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics. Cambridge University Press (2002).
  33. K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24 (2003) 1157–1174. [CrossRef] [MathSciNet]
  34. W. Mulder, S. Osher and J.A. Sethian, Computing interface motion in compressible gas dynamics. J. Comp. Phys. 100 (1992) 209–228. [NASA ADS] [CrossRef] [MathSciNet]
  35. H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comp. Phys. 87 (1990) 408–463. [NASA ADS] [CrossRef] [MathSciNet]
  36. J.J. Quirk and S. Karni, On the dynamics of a shock-bubble interaction. J. Fluid Mech. 318 (1996) 129–163. [CrossRef]
  37. P.L. Roe, Fluctuations and signals – a framework for numerical evolution problems, in Numerical Methods for Fluid Dynamics, Academic Press, New York (1982) 219–257.
  38. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comp. Phys. 150 (1999) 425–467. [CrossRef] [MathSciNet]
  39. K.-M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comp. Phys. 142 (1998) 208–242. [NASA ADS] [CrossRef]
  40. K.-M. Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comp. Phys. 156 (1999) 43–88. [CrossRef] [MathSciNet]
  41. P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21 (1984) 995–1011. [NASA ADS] [CrossRef] [MathSciNet]
  42. V. Ton, Improved shock-capturing methods for multicomponent and reacting flows. J. Comp. Phys. 128 (1996) 237–253. [CrossRef]
  43. E.F. Toro, Riemann solvers and numerical methods for fluid dynamics. A practical introduction. Second edition, Springer-Verlag, Berlin (1999).
  44. G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas and Y.-J. Jan, A front-tracking method for the computations of multiphase flow. J. Comp. Phys. 169 (2001) 708–759. [CrossRef]
  45. B. van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. J. Comp. Phys. 32 (1979) 101–136. [NASA ADS] [CrossRef]
  46. J. Wackers and B. Koren, Five-equation model for compressible two-fluid flow. Report MAS-E0414, CWI, Amsterdam (2004). Available at
  47. S.-P. Wang, M.H. Anderson, J.G. Oakley, M.L. Corradini and R. Bonazza, A thermodynamically consistent and fully conservative treatment of contact discontinuities for compressible multicomponent flows. J. Comp. Phys. 195 (2004) 528–559. [CrossRef]
  48. A. Wardlaw, Underwater explosion test cases. IHTR 2069 (1998).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you