Issue |
ESAIM: M2AN
Volume 42, Number 6, November-December 2008
|
|
---|---|---|
Page(s) | 925 - 940 | |
DOI | https://doi.org/10.1051/m2an:2008033 | |
Published online | 12 August 2008 |
Error estimates for the Ultra Weak Variational Formulation of the Helmholtz equation
1
Istituto di Matematica Applicata e Tecnologie Informatiche,
via Ferrata 1, 27100 Pavia, Italy. annalisa@imati.cnr.it
2
Department of Mathematical Sciences,
University of Delaware, Newark, DE 19716, USA. monk@math.udel.edu
Received:
20
July
2007
The Ultra Weak Variational Formulation (UWVF) of the Helmholtz equation provides a variational framework suitable for discretization using plane wave solutions of an appropriate adjoint equation. Currently convergence of the method is only proved on the boundary of the domain. However substantial computational evidence exists showing that the method also converges throughout the domain of the Helmholtz equation. In this paper we exploit the fact that the UWVF is essentially an upwind discontinuous Galerkin method to prove convergence of the solution in the special case where there is no absorbing medium present. We also provide some other estimates in the case when absorption is present, and give some simple numerical results to test the estimates. We expect that similar techniques can be used to prove error estimates for the UWVF applied to Maxwell's equations and elasticity.
Mathematics Subject Classification: 65N15 / 65N30 / 35J05
Key words: Helmholtz equation / UWVF / plane waves / error estimate.
© EDP Sciences, SMAI, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.