Free Access
Volume 42, Number 6, November-December 2008
Page(s) 925 - 940
Published online 12 August 2008
  1. M. Ainsworth, P. Monk and W. Muniz, Dispersive and dissipative properties of discontinuous Galerkin methods for the wave equation. J. Sci. Comput. 27 (2006) 5–40. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Arnold, F. Brezzi, B. Cockburn and L. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Barnett and T. Betcke, Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comp. Phys. (to appear). [Google Scholar]
  4. T. Betcke, A GSVD formulation of a domain decomposition method for planar eigenvalue problems. IMA J. Numer. Anal. 27 (2007) 451–478. [CrossRef] [MathSciNet] [Google Scholar]
  5. O. Cessenat, Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques. Problèmes de Helmholtz 2D et de Maxwell 3D. Ph.D. thesis, Université Paris IX Dauphine, France (1996). [Google Scholar]
  6. O. Cessenat and B. Després, Application of the ultra-weak variational formulation of elliptic PDEs to the 2-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255–299. [CrossRef] [MathSciNet] [Google Scholar]
  7. O. Cessenat and B. Després, Using plane waves as base functions for solving time harmonic equations with the Ultra Weak Variational Formulation. J. Comput. Acoustics 11 (2003) 227–238. [Google Scholar]
  8. P. Cummings and X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16 (2006) 139–160. [Google Scholar]
  9. P. Gamallo and R. Astley, A comparison of two Trefftz-type methods: The ultraweak variational formulation and the least-squares method, for solving shortwave 2-D Helmholtz problems. Int. J. Numer. Meth. Eng. 71 (2007) 406–432. [CrossRef] [Google Scholar]
  10. C. Gittelson, R. Hiptmair and I. Perugia, Plane wave discontinuous Galerkin methods. Preprint NI07088-HOP, Isaac Newton Institute Cambride, Cambridge, UK, December (2007) [Google Scholar]
  11. I. Herrera, Boundary Methods: an Algebraic Theory. Pitman (1984). [Google Scholar]
  12. T. Huttunen, J. Kaipio and P. Monk, The perfectly matched layer for the ultra weak variational formulation of the 3D Helmholtz equation. Int. J. Numer. Meth. Eng. 61 (2004) 1072–1092. [Google Scholar]
  13. T. Huttunen, P. Monk and J. Kaipio, Computational aspects of the Ultra Weak Variational Formulation. J. Comput. Phys. 182 (2002) 27–46. [CrossRef] [MathSciNet] [Google Scholar]
  14. T. Huttunen, P. Monk, F. Collino and J. Kaipio, The Ultra Weak Variational Formulation for elastic wave problems. SIAM J. Sci. Comput. 25 (2004) 1717–1742. [CrossRef] [MathSciNet] [Google Scholar]
  15. T. Huttunen, M. Malinen and P. Monk, Solving Maxwell's equations using the Ultra Weak Variational Formulation. J. Comput. Phys. 223 (2007) 731–758. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Melenk, On generalized finite element methods. Ph.D. thesis, University of Maryland, College Park, USA (1995). [Google Scholar]
  17. J. Melenk and I. Babuška, The partition of unity finite element method: Basic theory and applications. Comput. Meth. Appl. Mech. Eng. 139 (1996) 289–314. [Google Scholar]
  18. P. Monk and D. Wang, A least squares method for the Helmholtz equation. Comput. Meth. Appl. Mech. Eng. 175 (1999) 121–136. [Google Scholar]
  19. M. Stojek, Least-squares Trefftz-type elements for the Helmholtz equation. Int. J. Numer. Meth. Eng. 41 (1998) 831–849. [Google Scholar]
  20. R. Tezaur and C. Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Eng. 66 (2006) 796–815. [CrossRef] [Google Scholar]
  21. E. Trefftz, Ein gegenstück zum Ritz'schen verfahren, in Proc. 2nd Int. Congr. Appl. Mech., Zurich (1926) 131–137. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you