Issue |
ESAIM: M2AN
Volume 43, Number 3, May-June 2009
|
|
---|---|---|
Page(s) | 445 - 485 | |
DOI | https://doi.org/10.1051/m2an:2008051 | |
Published online | 18 December 2008 |
Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift
OUCL, University of Oxford, Parks Road, Oxford, OX1 3QD, UK. david.knezevic@balliol.ox.ac.uk; davek@comlab.ox.ac.uk; endre.suli@comlab.ox.ac.uk
Received:
29
January
2008
Revised:
17
July
2008
This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential U that is equal to +∞ along the boundary ∂D of the computational domain D. Using a symmetrization of the differential operator based on the Maxwellian M corresponding to U, which vanishes along ∂D, we remove the unbounded drift coefficient at the expense of introducing a degeneracy, through M, in the principal part of the operator. The general class of admissible potentials considered includes the FENE (finitely extendible nonlinear elastic) model. We show the existence of weak solutions to the initial-boundary-value problem, and develop a fully-discrete spectral Galerkin method for such degenerate Fokker-Planck equations that exhibits optimal-order convergence in the Maxwellian-weighted H1 norm on D. In the case of the FENE model, we also discuss variants of these analytical results when the Fokker-Planck equation is subjected to an alternative class of transformations proposed by Chauvière and Lozinski; these map the original Fokker-Planck operator with an unbounded drift coefficient into Fokker-Planck operators with unbounded drift and reaction coefficients, that have improved coercivity properties in comparison with the original operator. The analytical results are illustrated by numerical experiments for the FENE model in two space dimensions.
Mathematics Subject Classification: 65M70 / 65M12 / 35K20 / 82C31 / 82D60
Key words: Spectral methods / Fokker-Planck equations / transport-diffusion problems / FENE.
© EDP Sciences, SMAI, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.