Free Access
Issue
ESAIM: M2AN
Volume 43, Number 3, May-June 2009
Page(s) 445 - 485
DOI https://doi.org/10.1051/m2an:2008051
Published online 18 December 2008
  1. A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newtonian Fluid Mech. 139 (2006) 153–176. [CrossRef] [Google Scholar]
  2. A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: Transient simulation using space-time separated representations. J. Non-Newtonian Fluid Mech. 144 (2007) 98–121. [CrossRef] [Google Scholar]
  3. F.G. Avkhadiev and K.-J. Wirths, Unified Poincaré and Hardy inequalities with sharp constants for convex domains. ZAMM Z. Angew. Math. Mech. 87 (2007) 632–642. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.W. Barrett and E. Süli, Existence of global weak solutions to kinetic models of dilute polymers. Multiscale Model. Simul. 6 (2007) 506–546. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  5. J.W. Barrett and E. Süli, Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Math. Mod. Meth. Appl. Sci. 18 (2008) 935–971. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. J.W. Barrett and E. Süli, Numerical approximation of corotational dumbbell models for dilute polymers. IMA J. Numer. Anal. (2008) online. Available at http://imajna.oxfordjournals.org/cgi/content/abstract/drn022. [Google Scholar]
  7. J.W. Barrett, C. Schwab and E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Mod. Meth. Appl. Sci. 15 (2005) 939–983. [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Bernardi, Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 1212–1240. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Bernardi and Y. Maday, Spectral methods, in Handbook of Numerical Analysis V, P. Ciarlet and J. Lions Eds., Elsevier (1997). [Google Scholar]
  10. O.V. Besov and A. Kufner, The density of smooth functions in weight spaces. Czechoslova. Math. J. 18 (1968) 178–188. [Google Scholar]
  11. O.V. Besov, J. Kadlec and A. Kufner, Certain properties of weight classes. Dokl. Akad. Nauk SSSR 171 (1966) 514–516. [MathSciNet] [Google Scholar]
  12. R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics. Second edition, John Wiley and Sons (1987). [Google Scholar]
  13. R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory. Second edition, John Wiley and Sons (1987). [Google Scholar]
  14. S. Bobkov and M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10 (2000) 1028–1052. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Canuto, A. Quarteroni, M.Y. Hussaini and T.A. Zang, Spectral Methods: Fundamentals in Single Domains. Springer (2006). [Google Scholar]
  16. S. Cerrai, Second Order PDE's in Finite and Infinite Dimensions, A Probabilistic Approach, Lecture Notes in Mathematics 1762. Springer (2001). [Google Scholar]
  17. C. Chauvière and A. Lozinski, Simulation of complex viscoelastic flows using Fokker-Planck equation: 3D FENE model. J. Non-Newtonian Fluid Mech. 122 (2004) 201–214. [CrossRef] [Google Scholar]
  18. C. Chauvière and A. Lozinski, Simulation of dilute polymer solutions using a Fokker-Planck equation. Comput. Fluids 33 (2004) 687–696. [CrossRef] [Google Scholar]
  19. G. Da Prato and A. Lunardi, On a class of elliptic operators with unbounded coefficients in convex domains. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15 (2004) 315–326. [MathSciNet] [Google Scholar]
  20. Q. Du, C. Liu and P. Yu, FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4 (2005) 709–731. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  21. H. Eisen, W. Heinrichs and K. Witsch, Spectral collocation methods and polar coordinate singularities. J. Comput. Phys. 96 (1991) 241–257. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities. Springer (1973). [Google Scholar]
  23. B. Jourdain, T. Lelièvre and C. Le Bris, Numerical analysis of micro-macro simulations of polymeric fluid flows: A simple case. Math. Mod. Meth. Appl. Sci. 12 (2002) 1205–1243. [CrossRef] [Google Scholar]
  24. A.N. Kolmogorov, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104 (1931). [Google Scholar]
  25. A. Kufner, Weighted Sobolev Spaces, Teubner-Texte zur Mathematik. Teubner (1980). [Google Scholar]
  26. T. Li and P.-W. Zhang, Mathematical analysis of multi-scale models of complex fluids. Commun. Math. Sci. 5 (2007) 1–51. [MathSciNet] [Google Scholar]
  27. A. Lozinski and C. Chauvière, A fast solver for Fokker-Planck equation applied to viscoelastic flows calculation: 2D FENE model. J. Comput. Phys. 189 (2003) 607–625. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. Marcus, V.J. Mizel and Y. Pinchover, On the best constant for Hardy's inequality in Rn. Trans. Amer. Math. Soc. 350 (1998) 3237–3255. [CrossRef] [MathSciNet] [Google Scholar]
  29. T. Matsushima and P.S. Marcus, A spectral method for polar coordinates. J. Comput. Phys. 120 (1995) 365–374. [CrossRef] [MathSciNet] [Google Scholar]
  30. H.C. Öttinger, Stochastic Processes in Polymeric Fluids. Springer (1996). [Google Scholar]
  31. J. Shen, Efficient spectral Galerkin methods III: Polar and cylindrical geometries. SIAM J. Sci. Comput. 18 (1997) 1583–1604. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis. Third edition, North-Holland, Amsterdam (1984). [Google Scholar]
  33. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. Second edition, Johan Ambrosius Barth, Heidelberg (1995). [Google Scholar]
  34. W.T.M. Verkley, A spectral model for two-dimensional incompressible fluid flow in a circular basin I. Mathematical formulation. J. Comput. Phys. 136 (1997) 100–114. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you