Issue |
ESAIM: M2AN
Volume 43, Number 4, July-August 2009
Special issue on Numerical ODEs today
|
|
---|---|---|
Page(s) | 709 - 720 | |
DOI | https://doi.org/10.1051/m2an/2009021 | |
Published online | 08 July 2009 |
Regularization of nonlinear ill-posed problems by exponential integrators
1
Mathematisches Institut,
Heinrich-Heine Universität Düsseldorf,
Universitätsstraße 1,
40225 Düsseldorf,
Germany. marlis@am.uni-duesseldorf.de; hoenig@am.uni-duesseldorf.de
2
Institut für Mathematik,
Universität Innsbruck,
Technikerstraße 13,
6020 Innsbruck, Austria. alexander.ostermann@uibk.ac.at
Received:
13
August
2008
The numerical solution of ill-posed problems requires suitable regularization techniques. One possible option is to consider time integration methods to solve the Showalter differential equation numerically. The stopping time of the numerical integrator corresponds to the regularization parameter. A number of well-known regularization methods such as the Landweber iteration or the Levenberg-Marquardt method can be interpreted as variants of the Euler method for solving the Showalter differential equation. Motivated by an analysis of the regularization properties of the exact solution of this equation presented by [U. Tautenhahn, Inverse Problems 10 (1994) 1405–1418], we consider a variant of the exponential Euler method for solving the Showalter ordinary differential equation. We discuss a suitable discrepancy principle for selecting the step sizes within the numerical method and we review the convergence properties of [U. Tautenhahn, Inverse Problems 10 (1994) 1405–1418], and of our discrete version [M. Hochbruck et al., Technical Report (2008)]. Finally, we present numerical experiments which show that this method can be efficiently implemented by using Krylov subspace methods to approximate the product of a matrix function with a vector.
Mathematics Subject Classification: 65J20 / 65N21 / 65L05
Key words: Nonlinear ill-posed problems / asymptotic regularization / exponential integrators / variable step sizes / convergence / optimal convergence rates.
© EDP Sciences, SMAI, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.