Free Access
Volume 43, Number 4, July-August 2009
Special issue on Numerical ODEs today
Page(s) 709 - 720
Published online 08 July 2009
  1. C. Böckmann and P. Pornsawad, Iterative Runge-Kutta-type methods for nonlinear ill-posed problems. Inverse Problems 24 (2008) 025002. [CrossRef] [MathSciNet]
  2. J. Daniel, W.B. Gragg, L. Kaufman and G.W. Stewart, Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comp. 30 (1976) 772–795.
  3. V.L. Druskin and L.A. Knizhnerman, Krylov subspace approximations of eigenpairs and matrix functions in exact and computer arithmetic. Numer. Lin. Alg. Appl. 2 (1995) 205–217. [CrossRef]
  4. H.W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularization of nonlinear ill-posed problems. Inverse Problems 5 (1989) 523–540. [CrossRef] [MathSciNet]
  5. B. Hackl, Geometry Variations, Level Set and Phase-field Methods for Perimeter Regularized Geometric Inverse Problems. Ph.D. Thesis, Johannes Keppler Universität Linz, Austria (2006).
  6. M. Hanke, A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Problems 13 (1997) 79–95. [CrossRef] [MathSciNet]
  7. M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72 (1995) 21–37. [CrossRef] [MathSciNet]
  8. M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34 (1997) 1911–1925. [CrossRef] [MathSciNet]
  9. M. Hochbruck and A. Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43 (2005) 1069–1090. [CrossRef] [MathSciNet]
  10. M. Hochbruck, M. Hönig and A. Ostermann, A convergence analysis of the exponential Euler iteration for nonlinear ill-posed problems. Inv. Prob. 25 (2009) 075009. [CrossRef]
  11. M. Hochbruck, A. Ostermann and J. Schweitzer, Exponential Rosenbrock-type methods. SIAM J. Numer. Anal. 47 (2009) 786–803. [CrossRef]
  12. T. Hohage and S. Langer, Convergence analysis of an inexact iteratively regularized Gauss-Newton method under general source conditions. Journal of Inverse and Ill-Posed Problems 15 (2007) 19–35. [CrossRef] [MathSciNet]
  13. M. Hönig, Asymptotische Regularisierung schlecht gestellter Probleme mittels steifer Integratoren. Diplomarbeit, Universität Karlsruhe, Germany (2004).
  14. B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems. De Gruyter, Berlin, New York (2008).
  15. A. Neubauer, Tikhonov regularization for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation. Inverse Problems 5 (1989) 541–557. [CrossRef] [MathSciNet]
  16. A. Rieder, On the regularization of nonlinear ill-posed problems via inexact Newton iterations. Inverse Problems 15 (1999) 309–327. [CrossRef] [MathSciNet]
  17. A. Rieder, On convergence rates of inexact Newton regularizations. Numer. Math. 88 (2001) 347–365. [CrossRef] [MathSciNet]
  18. A. Rieder, Inexact Newton regularization using conjugate gradients as inner iteration. SIAM J. Numer. Anal. 43 (2005) 604–622. [CrossRef] [MathSciNet]
  19. A. Rieder, Runge-Kutta integrators yield optimal regularization schemes. Inverse Problems 21 (2005) 453–471. [CrossRef] [MathSciNet]
  20. T.I. Seidman and C.R. Vogel, Well-posedness and convergence of some regularization methods for nonlinear ill-posed problems. Inverse Problems 5 (1989) 227–238. [CrossRef] [MathSciNet]
  21. D. Showalter, Representation and computation of the pseudoinverse. Proc. Amer. Math. Soc. 18 (1967) 584–586. [CrossRef] [MathSciNet]
  22. U. Tautenhahn, On the asymptotical regularization of nonlinear ill-posed problems. Inverse Problems 10 (1994) 1405–1418. [CrossRef] [MathSciNet]
  23. J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comp. 27 (2006) 1438–1457. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you