Issue |
ESAIM: M2AN
Volume 44, Number 6, November-December 2010
|
|
---|---|---|
Page(s) | 1255 - 1277 | |
DOI | https://doi.org/10.1051/m2an/2010025 | |
Published online | 17 March 2010 |
Numerical modelling of algebraic closure models of oceanic turbulent mixing layers
1
IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex,
France.
2
Departamento de Ecuaciones Diferenciales y Análisis Numerico,
Universidad de Sevilla, C/Tarfia, s/n. 41080, Sevilla, Spain. chacon@us.es
Received:
4
May
2008
Revised:
17
November
2009
We introduce in this paper some elements for the mathematical and numerical analysis of algebraic turbulence models for oceanic surface mixing layers. In these models the turbulent diffusions are parameterized by means of the gradient Richardson number, that measures the balance between stabilizing buoyancy forces and destabilizing shearing forces. We analyze the existence and linear exponential asymptotic stability of continuous and discrete equilibria states. We also analyze the well-posedness of a simplified model, by application of the linearization principle for non-linear parabolic equations. We finally present some numerical tests for realistic flows in tropical seas that reproduce the formation of mixing layers in time scales of the order of days, in agreement with the physics of the problem. We conclude that the typical mixing layers are transient effects due to the variability of equatorial winds. Also, that these states evolve to steady states in time scales of the order of years, under negative surface energy flux conditions.
Mathematics Subject Classification: 76D05 / 35Q30 / 76F65 / 76D03
Key words: Turbulent mixing layers / Richardson number / first order closure models / conservative numerical solution / stability of steady states / tests for tropical seas
© EDP Sciences, SMAI, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.