Free Access
Issue
ESAIM: M2AN
Volume 44, Number 6, November-December 2010
Page(s) 1255 - 1277
DOI https://doi.org/10.1051/m2an/2010025
Published online 17 March 2010
  1. B. Blanke and P. Delecluse, Variability of the tropical atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr. 23 (1993) 1363–1388. [CrossRef] [Google Scholar]
  2. J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the l2 projection in h1. Math. Comp. 7 (2001) 147–156. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Burchard, Applied turbulence modelling in marine water. Ph.D. Thesis, University of Hambourg, Germany (2004). [Google Scholar]
  4. P. Gaspar, Y. Gregoris and J.-M. Lefevre, A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: test at Station Papa and long-term upper ocean study site. J. Geophys. Res. 16 (1990) 179–193. [Google Scholar]
  5. P.R. Gent, The heat budget of the toga-coare domain in an ocean model. J. Geophys. Res. 96 (1991) 3323–3330. [Google Scholar]
  6. H. Goosse, E. Deleersnijder, T. Fichefet and M.H. England, Sensitivity of a global coupled ocean-sea ice model to the parametrization of vertical mixing. J. Geophys. Res. 104 (1999) 13681–13695. [CrossRef] [Google Scholar]
  7. J.H. Jones, Vertical mixing in the equatorial undercurrent. J. Phys. Oceanogr. 3 (1973) 286–296. [CrossRef] [Google Scholar]
  8. Z. Kowalik and T.S. Murty, Numerical modeling of ocean dynamics. World Scientific (1993). [Google Scholar]
  9. W.G. Large, C. McWilliams and S.C. Doney, Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parametrization. Rev. Geophys. 32 (1994) 363–403. [CrossRef] [Google Scholar]
  10. G. Madec, P. Delecluse, M. Imbard and C. Levy, OPA version 8.0, Ocean General Circulation Model Reference Manual. LODYC, Int. Rep. 97/04 (1997). [Google Scholar]
  11. M. McPhaden, The tropical atmosphere ocean (tao) array is completed. Bull. Am. Meteorol. Soc. 76 (1995) 739–741. [Google Scholar]
  12. G. Mellor and T. Yamada, Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20 (1982) 851–875. [NASA ADS] [CrossRef] [Google Scholar]
  13. R.C. Pacanowski and S.G.H. Philander, Parametrization of vertical mixing in numericals models of the tropical oceans. J. Phys. Oceanogr. 11 (1981) 1443–1451. [CrossRef] [Google Scholar]
  14. J. Pedloski, Geophysical fluid dynamics. Springer (1987). [Google Scholar]
  15. M. Potier-Ferry, The linearization principle for the stability of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 77 (1981) 301–320. [CrossRef] [Google Scholar]
  16. A.R. Robinson, An investigation into the wind as the cause of the equatiorial undercurrent. J. Mar. Res. 24 (1966) 179–204. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you