Free Access
Volume 44, Number 6, November-December 2010
Page(s) 1255 - 1277
Published online 17 March 2010
  1. B. Blanke and P. Delecluse, Variability of the tropical atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr. 23 (1993) 1363–1388. [CrossRef]
  2. J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the l2 projection in h1. Math. Comp. 7 (2001) 147–156. [CrossRef] [MathSciNet]
  3. H. Burchard, Applied turbulence modelling in marine water. Ph.D. Thesis, University of Hambourg, Germany (2004).
  4. P. Gaspar, Y. Gregoris and J.-M. Lefevre, A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: test at Station Papa and long-term upper ocean study site. J. Geophys. Res. 16 (1990) 179–193.
  5. P.R. Gent, The heat budget of the toga-coare domain in an ocean model. J. Geophys. Res. 96 (1991) 3323–3330.
  6. H. Goosse, E. Deleersnijder, T. Fichefet and M.H. England, Sensitivity of a global coupled ocean-sea ice model to the parametrization of vertical mixing. J. Geophys. Res. 104 (1999) 13681–13695. [CrossRef]
  7. J.H. Jones, Vertical mixing in the equatorial undercurrent. J. Phys. Oceanogr. 3 (1973) 286–296. [CrossRef]
  8. Z. Kowalik and T.S. Murty, Numerical modeling of ocean dynamics. World Scientific (1993).
  9. W.G. Large, C. McWilliams and S.C. Doney, Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parametrization. Rev. Geophys. 32 (1994) 363–403. [CrossRef]
  10. G. Madec, P. Delecluse, M. Imbard and C. Levy, OPA version 8.0, Ocean General Circulation Model Reference Manual. LODYC, Int. Rep. 97/04 (1997).
  11. M. McPhaden, The tropical atmosphere ocean (tao) array is completed. Bull. Am. Meteorol. Soc. 76 (1995) 739–741.
  12. G. Mellor and T. Yamada, Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20 (1982) 851–875. [NASA ADS] [CrossRef]
  13. R.C. Pacanowski and S.G.H. Philander, Parametrization of vertical mixing in numericals models of the tropical oceans. J. Phys. Oceanogr. 11 (1981) 1443–1451. [CrossRef]
  14. J. Pedloski, Geophysical fluid dynamics. Springer (1987).
  15. M. Potier-Ferry, The linearization principle for the stability of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 77 (1981) 301–320. [CrossRef]
  16. A.R. Robinson, An investigation into the wind as the cause of the equatiorial undercurrent. J. Mar. Res. 24 (1966) 179–204.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you