Issue |
ESAIM: M2AN
Volume 47, Number 1, January-February 2013
|
|
---|---|---|
Page(s) | 1 - 32 | |
DOI | https://doi.org/10.1051/m2an/2012017 | |
Published online | 31 July 2012 |
A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport
1
Dpto. de Análisis Matemático, Facultad de Ciencias, Universidad de
Málga, Campus de Teatinos,
s/n, 29071
Málaga,
Spain
castor@anamat.cie.uma.es; pares@anamat.cie.uma.es
2
Dpto. Matemática Aplicada I, ETS Arquitectura, Universidad de
Sevilla, Avda. Reina Mercedes No.
2, 41012
Sevilla,
Spain
edofer@us.es; gnarbona@us.es
3
Dpto. de Matemáticas, Universidad de Córdoba,
Campus de Rabanales,
14071
Córdoba,
Spain
tomas.morales@uco.es
Received:
24
June
2011
Revised:
4
April
2012
The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current model. The main difficulties come from the nonconservative nature of the system. A general strategy to derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied to the turbidity current model to obtain two different HLLC solvers. Some results concerning the non-negativity preserving property of the corresponding numerical methods are presented. The numerical results provided by the two HLLC solvers are compared between them and also with those obtained with a Roe-type method in a number of 1d and 2d test problems. This comparison shows that, while the quality of the numerical solutions is comparable, the computational cost of the HLLC solvers is lower, as only some partial information of the eigenstructure of the matrix system is needed.
Mathematics Subject Classification: 65N06 / 76B15 / 76M20 / 76N99
Key words: Well-balanced / finite volume method / path-conservative / simple Riemann solver / HLLC
© EDP Sciences, SMAI, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.