Free Access
Volume 47, Number 1, January-February 2013
Page(s) 1 - 32
Published online 31 July 2012
  1. R. Abgrall and S. Karni, A comment on the computation of non-conservative products. J. Comput. Phys. 229 (2010) 2759–2763. [CrossRef] [MathSciNet] [Google Scholar]
  2. M.S. Altinaker, W.H. Graf and E. Hopfinger, Flow structure in turbidity currents. J. Hydr. Res. 34 (1996) 713–718. [CrossRef] [Google Scholar]
  3. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, in Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). [Google Scholar]
  4. S.F. Bradford and N.D. Katopodes, Hydrodynamics of turbid underflows. i : Formulation and numerical analysis. J. Hydr. Eng. 125 (1999) 1006–1015. [CrossRef] [Google Scholar]
  5. M.J. Castro, P.G. LeFloch, M.L. Muñoz-Ruiz and C. Parés, Why many theories of shock waves are necessary : Convergence error in formally path-consistent schemes. J. Comput. Phys. 227 (2008) 8107–8129. [CrossRef] [MathSciNet] [Google Scholar]
  6. M.J. Castro, E.D. Fernández-Nieto, A.M. Ferreiro, J.A. García-Rodríguez and C. Parés, High order extensions of Roe schemes for two-dimensional nonconservative hyperbolic systems. J. Sci. Comput. 39 (2009) 67–114. [CrossRef] [Google Scholar]
  7. M. Castro Díaz, E. Fernéndez-Nieto and A. Ferreiro, Sediment transport models in shallow water equations and numerical approach by high order finite volume methods. Comput. Fluids 37 (2008) 299–316. [CrossRef] [MathSciNet] [Google Scholar]
  8. M.J. Castro Díaz, E.D. Fernández-Nieto, A.M. Ferreiro and C. Parés, Two-dimensional sediment transport models in shallow water equations. A second order finite volume approach on unstructured meshes. Comput. Methods Appl. Mech. Eng. 198 (2009) 2520–2538. [CrossRef] [Google Scholar]
  9. S. Cordier, M. Le and T. Morales de Luna, Bedload transport in shallow water models : Why splitting (may) fail, how hyperbolicity (can) help. Adv. Water Resour. 34 (2011) 980–989. [CrossRef] [Google Scholar]
  10. G. Dal Maso, P.G. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. [Google Scholar]
  11. F. Exner, Über die wechselwirkung zwischen wasser und geschiebe in flüssen. Sitzungsber., Akad. Wissenschaften IIa (1925). [Google Scholar]
  12. E.D. Fernández-Nieto, Modelling and numerical simulation of submarine sediment shallow flows : transport and avalanches. Bol. Soc. Esp. Mat. Apl. S􏿻 MA 49 (2009) 83–103. [Google Scholar]
  13. A.C. Fowler, N. Kopteva and C. Oakley, The formation of river channels. SIAM J. Appl. Math. 67 (2007) 1016–1040. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Gallardo, S. Ortega, M. de la Asunción and J. Mantas, Two-Dimensional compact third-order polynomial reconstructions. solving nonconservative hyperbolic systems using GPUs. J. Sci. Comput. 48 (2011) 141–163. [CrossRef] [Google Scholar]
  15. A. Grass, Sediment transport by waves and currents. SERC London Cent. Mar. Technol. Report No. FL29 (1981). [Google Scholar]
  16. A. Harten, P.D. Lax and B. van Leer, On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983). [Google Scholar]
  17. T.Y. Hou and P.G. Le Floch, Why nonconservative schemes converge to wrong solutions : error analysis. Math. Comput. 62 (1994) 497–530. [CrossRef] [MathSciNet] [Google Scholar]
  18. S.M. Khan, J. Imran, S. Bradford and J. Syvitski, Numerical modeling of hyperpycnal plume. Mar. Geol. 222-223 (2005) 193–211. [CrossRef] [Google Scholar]
  19. Y. Kubo, Experimental and numerical study of topographic effects on deposition from two-dimensional, particle-driven density currents. Sediment. Geol. 164 (2004) 311–326. [CrossRef] [Google Scholar]
  20. Y. Kubo and T. Nakajima, Laboratory experiments and numerical simulation of sediment-wave formation by turbidity currents. Mar. Geol. 192 (2002) 105–121. [CrossRef] [Google Scholar]
  21. D.A. Lyn and M. Altinakar, St. Venant-Exner equations for Near-Critical and transcritical flows. J. Hydr. Eng. 128 (2002) 579–587. [CrossRef] [Google Scholar]
  22. E. Meyer-Peter, and R. Müller, Formulas for bed-load transport, in 2nd meeting IAHSR. Stockholm, Sweden (1948) 1–26. [Google Scholar]
  23. T. Morales de Luna, M.J. Castro Díaz, C. Parés Madroñal and E.D. Fernández Nieto, On a shallow water model for the simulation of turbidity currents. Commun. Comput. Phys. 6 (2009) 848–882. [CrossRef] [Google Scholar]
  24. T. Morales de Luna, M.J. Castro Díaz and C. Parés Madroñal, A duality method for sediment transport based on a modified Meyer-Peter & Müller model. J. Sci. Comput. 48 (2010) 258–273. [CrossRef] [Google Scholar]
  25. P.H. Morris and D.J. Williams, Relative celerities of mobile bed flows with finite solids concentrations. J. Hydr. Eng. 122 (1996) 311–315. [CrossRef] [Google Scholar]
  26. M.L. Muñoz Ruiz and C. Parés, On the convergence and Well-Balanced property of Path-conservative numerical schemes for systems of balance laws. J. Sci. Comput. 48 (2011) 274–295. [CrossRef] [Google Scholar]
  27. P. Nielsen, Coastal Bottom Boundary Layers and Sediment Transport. World Scientific Pub. Co. Inc. (1992). [Google Scholar]
  28. C. Parés, Numerical methods for nonconservative hyperbolic systems : a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300–321 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  29. C. Parés and M.L. Muñoz Ruiz, On some difficulties of the numerical approximation of nonconservative hyperbolic systems. Bol. Soc. Esp. Mat. Apl. 47 (2009) 23–52. [Google Scholar]
  30. G. Parker, Y. Fukushima and H.M. Pantin, Self-accelerating turbidity currents. J. Fluid Mech. 171 (1986) 145–181. [CrossRef] [Google Scholar]
  31. E.F. Toro, M. Spruce and W. Speares, Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4 (1994) 25–34. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  32. E.F. Toro, Shock-capturing methods for free-surface shallow flows. John Wiley (2001). [Google Scholar]
  33. L. Van Rijn, Sediment transport : bed load transport. J. Hydr. Eng. 110 (1984) 1431–1456. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you