Issue |
ESAIM: M2AN
Volume 47, Number 6, November-December 2013
|
|
---|---|---|
Page(s) | 1657 - 1689 | |
DOI | https://doi.org/10.1051/m2an/2013083 | |
Published online | 30 August 2013 |
Optimal uncertainty quantification for legacy data observations of Lipschitz functions
1 Mathematics Institute, University of
Warwick, Coventry,
CV4 7AL,
UK.
Tim.Sullivan@warwick.ac.uk
2 Center for Advanced Computing
Research, California Institute of Technology, 1200 East California Boulevard, Mail Code 158-79, Pasadena, CA
91125,
USA.
mmckerns@caltech.edu
3 Lehrstuhl für Numerische Mechanik,
Technische Universität München, Boltzmannstrasse 15, 85747, Garching bei
München, Germany.
meyer@lnm.mw.tum.de
4 Mathematics Institute, University of
Warwick, Coventry,
CV4 7AL,
UK.
f.theil@warwick.ac.uk
5 Applied & Computational
Mathematics and Control & Dynamical Systems, California Institute of Technology,
Mail Code 9-94, 1200 East
California Boulevard, Pasadena, CA
91125,
USA.
owhadi@caltech.edu
6 Division of Engineering and Applied
Science, California Institute of Technology, Mail Code 105-50,
1200 East California Boulevard,
Pasadena, CA
91125,
USA.
ortiz@caltech.edu
Received:
9
February
2012
We consider the problem of providing optimal uncertainty quantification (UQ) – and hence rigorous certification – for partially-observed functions. We present a UQ framework within which the observations may be small or large in number, and need not carry information about the probability distribution of the system in operation. The UQ objectives are posed as optimization problems, the solutions of which are optimal bounds on the quantities of interest; we consider two typical settings, namely parameter sensitivities (McDiarmid diameters) and output deviation (or failure) probabilities. The solutions of these optimization problems depend non-trivially (even non-monotonically and discontinuously) upon the specified legacy data. Furthermore, the extreme values are often determined by only a few members of the data set; in our principal physically-motivated example, the bounds are determined by just 2 out of 32 data points, and the remainder carry no information and could be neglected without changing the final answer. We propose an analogue of the simplex algorithm from linear programming that uses these observations to offer efficient and rigorous UQ for high-dimensional systems with high-cardinality legacy data. These findings suggest natural methods for selecting optimal (maximally informative) next experiments.
Mathematics Subject Classification: 60E15 / 62G99 / 65C50 / 90C26
Key words: Uncertainty quantification / probability inequalities / non-convex optimization / Lipschitz functions / legacy data / point observations
© EDP Sciences, SMAI, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.